A generalized commutation relation for the regular representation
Bulletin de la Société Mathématique de France (1969)
- Volume: 97, page 289-297
- ISSN: 0037-9484
Access Full Article
topHow to cite
topTakesaki, M.. "A generalized commutation relation for the regular representation." Bulletin de la Société Mathématique de France 97 (1969): 289-297. <http://eudml.org/doc/87128>.
@article{Takesaki1969,
author = {Takesaki, M.},
journal = {Bulletin de la Société Mathématique de France},
keywords = {functional analysis},
language = {eng},
pages = {289-297},
publisher = {Société mathématique de France},
title = {A generalized commutation relation for the regular representation},
url = {http://eudml.org/doc/87128},
volume = {97},
year = {1969},
}
TY - JOUR
AU - Takesaki, M.
TI - A generalized commutation relation for the regular representation
JO - Bulletin de la Société Mathématique de France
PY - 1969
PB - Société mathématique de France
VL - 97
SP - 289
EP - 297
LA - eng
KW - functional analysis
UR - http://eudml.org/doc/87128
ER -
References
top- [1] BOURBAKI (N.). - Intégration, chap. 7-8. - Paris, Hermann, 1963 (Act. scient. et ind., 1306 ; Bourbaki, 29). Zbl0156.03204
- [2] DIXMIER (J.). - Les algèbres d'opérateurs dans l'espace hilbertien. - Paris, Gauthier-Villars, 1957. Zbl0088.32304
- [3] DIXMIER (J.). - Les C*-algèbres et leurs représentations. - Paris, Gauthier-Villars, 1964 (Cahiers scientifiques, 29). Zbl0152.32902MR30 #1404
- [4] DIXMIER (J.). - Algèbres quasi-unitaires, Comment. Math. Helvet., t. 26, 1952, p. 275-322. Zbl0047.35601MR14,660b
- [5] DOPLICHER (S.), KASTLER (D.) and ROBINSON (D. W.). - Covariance algebras in field theory and statistical mechanics, Comm. Math. Phys., Berlin, t. 3, 1966, p. 1-28. Zbl0152.23803MR34 #4930
- [6] FELL (J. M. G.). - An extension of Mackey's method to representations of algebraic bundles (to appear). Zbl0194.44301
- [7] GLIMM (J.). - Families of induced representations, Pacific J. Math., t. 12, 1962, p. 885-911. Zbl0121.10303MR26 #3819
- [8] LOOMIS (L. H.). - Note on a theorem of Mackey, Duke Math. J., t. 19, 1952, p. 641-645. Zbl0047.35501MR14,352c
- [9] MACKEY (G. W.). - A theorem of Stone and von Neumann, Duke Math. J., t. 16, 1949, p. 313-326. Zbl0036.07703MR11,10b
- [10] MACKEY (G. W.). - Induced representations of locally compact groups, I, Annals of Math., Series 2, t. 55, 1952, p. 101-139. Zbl0046.11601MR13,434a
- [11] MACKEY (G. W.). - Unitary representations of group extensions, Acta Math., t. 99, 1958, p. 265-311. Zbl0082.11301MR20 #4789
- [12] MACKEY (G. W.). - Infinite-dimensional group representations, Bull. Amer. math. Soc., t. 69, 1963, p. 628-686. Zbl0136.11502MR27 #3745
- [13] NAKAMURA (M.) and UMEGAKI (H.). - Heisenberg's commutation relation and the Plancherel theorem, Proc. Japan Acad., t. 37, 1961, p. 239-242. Zbl0101.09404MR29 #3579
- [14] VON NEUMANN (J.). - Die Eindeutigkeit der Schrödingerschen Operatoren, Math. Annalen, t. 104, 1931, p. 570-578. Zbl0001.24703JFM57.1446.01
- [15] TAKESAKI (M.). - On some representations of C*-algebras, Tohoku math. J., t. 65, 1963, p. 79-95. Zbl0161.11003MR26 #6810
- [16] TAKESAKI (M.). - Covariant representations of C*-algebras and their locally compact automorphism groups, Acta Math., t. 119, 1967, p. 273-303. Zbl0163.36802MR37 #774
- [17] TAKESAKI (M.). - A characterization of group algebra as a converse of Tanneka-Stinespring-Tatsuuma duality theorem (to appear).
- [18] TAKESAKI (M.). - A liminal crossed product of a uniformly hyperfinite C*-algebra by a compact abelian automorphism group (to appear). Zbl0229.46055
- [19] TURUMARU (T.). - Crossed product of operator algebras, Tohoku math. J., t. 10, 1958, p. 355-365. Zbl0087.31803MR21 #1550
- [20] ZELLER-MEIER (G.). - Produits croisés d'une C*-algèbre par un groupe d'automorphismes (to appear).
- [21] ARAKI (H.). - A lattice of von Neumann algebras associated with the quantum theory of a free Bose field, J. math. Phys., t. 4, 1963, p. 1343-1362. Zbl0132.43805MR28 #1889
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.