Characters and inner forms of a quasi-split group over
Compositio Mathematica (1979)
- Volume: 39, Issue: 1, page 11-45
- ISSN: 0010-437X
Access Full Article
topHow to cite
topShelstad, D.. "Characters and inner forms of a quasi-split group over $R$." Compositio Mathematica 39.1 (1979): 11-45. <http://eudml.org/doc/89413>.
@article{Shelstad1979,
author = {Shelstad, D.},
journal = {Compositio Mathematica},
keywords = {real reductive algebraic group; discrete series representations; quasisplit inner form; Schwartz function; tempered representations; characters},
language = {eng},
number = {1},
pages = {11-45},
publisher = {Sijthoff et Noordhoff International Publishers},
title = {Characters and inner forms of a quasi-split group over $R$},
url = {http://eudml.org/doc/89413},
volume = {39},
year = {1979},
}
TY - JOUR
AU - Shelstad, D.
TI - Characters and inner forms of a quasi-split group over $R$
JO - Compositio Mathematica
PY - 1979
PB - Sijthoff et Noordhoff International Publishers
VL - 39
IS - 1
SP - 11
EP - 45
LA - eng
KW - real reductive algebraic group; discrete series representations; quasisplit inner form; Schwartz function; tempered representations; characters
UR - http://eudml.org/doc/89413
ER -
References
top- [1] J. Arthur: "Harmonic analysis of the Schwartz space on a reductive Lie group II." Unpublished manuscript.
- [2] A. Borel and J. Tits: Groupes reductifs, Inst. Hautes Études Sci. Publ. Math., 27 (1965) 55-152. Zbl0145.17402MR207712
- [3] P. Gérardin: Construction de séries discrètes p-adiques. Lecture Notes in Mathematics462. Springer, Berlin etc. (1975). Zbl0302.22002MR396859
- [4] Harish-Chandra: Discrete series for semisimple Lie groups I, Acta Math., 113 (1965) 241-318. Zbl0152.13402MR219665
- [5] Harish-Chandra: Discrete series for semisimple Lie groups II, Acta Math., 116 (1966) 1-111. Zbl0199.20102MR219666
- [6] Harish-Chandra: Harmonic analysis on real reductive groups I, J. Funct. Analysis, 19 (1975) 104-204. Zbl0315.43002MR399356
- [7] Harish-Chandra: Harmonic analysis on real reductive groups II, Inventiones Math., 36 (1976) 1-55. Zbl0341.43010MR439993
- [8] Harish-Chandra: Harmonic analysis on real reductive groups III, Annals of Math., 104 (1976) 117-201. Zbl0331.22007MR439994
- [9] H. Hecht and W. Schmid: A proof of Blattner's conjecture, Inventiones Math., 31 (1975) 129-154. Zbl0319.22012MR396855
- [10] T. Hirai: Explicit form of the characters of discrete series representations of semisimple Lie groups, Proc. Sympos. Pure Math., Amer. Math. Soc., 26 (1973) 281-288. Zbl0287.22013MR404529
- [11] R. Howe: Representation theory for division algebras over local fields (tamely ramified case), Bull. Amer. Math. Soc., 77 (1971) 1063-1066. Zbl0223.22009MR286939
- [12] H. Jacquet and R. Langlands: Automorphic forms on GL(2). Lecture Notes in Mathematics114, Springer, Berlin etc. (1970). Zbl0236.12010MR401654
- [13] A. Knapp: Commutativity of intertwining operators II, Bull. Amer. Math. Soc., 82 (1976) 271-273. Zbl0333.22006MR407203
- [14] A. Knapp and G. Zuckerman: "Classification theorems for representations of semisimple Lie groups." Lecture Notes in Mathematics587, Springer (1977) 138-159. Zbl0353.22011MR476923
- [15] A. Knapp and G. Zuckerman: "Classification of irreducible tempered representations of semisimple Lie groups." Proc. Nat. Acad. Sci. U.S.A., 73 (1976) 2178-2180. Zbl0329.22013MR460545
- [16]. G. Köthe: Topologische lineare Räume 1. Springer, Berlin etc. (1960). Zbl0093.11901MR130551
- [17] R. Langlands: "Problems in the theory of automorphic forms," Lectures in modern analysis and applications III. Lecture Notes in Mathematics 170, Springer, Berlin etc. (1970). Zbl0225.14022MR302614
- [18] R. Langlands: "On the classification of irreducible representations of real algebraic groups." Unpublished manuscript. Zbl0741.22009
- [19] R. Langlands: "Stable conjugacy: definitions and lemmas." (To appear in Can. J. Math.). Zbl0421.12013MR540901
- [20] J.-P. Labesse and R. Langlands: "L-indistinguishability for SL(2)." (To appear in Can. J. Math.). Zbl0421.12014MR540902
- [21] I. Satake: Classification theory of semisimple algebraic groups, Lecture Notes in Pure and Applied Mathematics3, Marcel Dekker, (1971). Zbl0226.20037MR316588
- [22] W. Schmid: Some properties of square-integrable representations of semisimple Lie groups, Annals of Math., 102 (1975) 535-564. Zbl0347.22011MR579165
- [23] D. Shelstad: "Some character relations for real reductive algebraic groups." Unpublished PhD. thesis, Yale University (1974).
- [24] B. Speh and D. Vogan: "Reductibility of generalized principal series representations." (To appear). Zbl0457.22011MR590291
- [25] V. Varadarajan: The theory of characters and the discrete series for semisimple Lie groups, Proc. Sympos. Pure Math., Amer. Math. Soc., 26 (1973) 45-100. Zbl0295.22014MR409730
- [26] G. Warner: Harmonic analysis on semisimple Lie groups, two volumes. Springer, Berlin etc. (1972).
Citations in EuDML Documents
top- Diana Shelstad, Orbital integrals and a family of groups attached to a real reductive group
- Laurent Clozel, Changement de base pour les représentations tempérées des groupes réductifs réels
- Jeffrey Adams, Joseph F. Johnson, Endoscopic groups and packets of non-tempered representations
- Abderrazak Bouaziz, Intégrales orbitales sur les groupes de Lie réductifs
- Laurent Clozel, Représentations galoisiennes associées aux représentations automorphes autoduales de
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.