Characters and inner forms of a quasi-split group over R

D. Shelstad

Compositio Mathematica (1979)

  • Volume: 39, Issue: 1, page 11-45
  • ISSN: 0010-437X

How to cite

top

Shelstad, D.. "Characters and inner forms of a quasi-split group over $R$." Compositio Mathematica 39.1 (1979): 11-45. <http://eudml.org/doc/89413>.

@article{Shelstad1979,
author = {Shelstad, D.},
journal = {Compositio Mathematica},
keywords = {real reductive algebraic group; discrete series representations; quasisplit inner form; Schwartz function; tempered representations; characters},
language = {eng},
number = {1},
pages = {11-45},
publisher = {Sijthoff et Noordhoff International Publishers},
title = {Characters and inner forms of a quasi-split group over $R$},
url = {http://eudml.org/doc/89413},
volume = {39},
year = {1979},
}

TY - JOUR
AU - Shelstad, D.
TI - Characters and inner forms of a quasi-split group over $R$
JO - Compositio Mathematica
PY - 1979
PB - Sijthoff et Noordhoff International Publishers
VL - 39
IS - 1
SP - 11
EP - 45
LA - eng
KW - real reductive algebraic group; discrete series representations; quasisplit inner form; Schwartz function; tempered representations; characters
UR - http://eudml.org/doc/89413
ER -

References

top
  1. [1] J. Arthur: "Harmonic analysis of the Schwartz space on a reductive Lie group II." Unpublished manuscript. 
  2. [2] A. Borel and J. Tits: Groupes reductifs, Inst. Hautes Études Sci. Publ. Math., 27 (1965) 55-152. Zbl0145.17402MR207712
  3. [3] P. Gérardin: Construction de séries discrètes p-adiques. Lecture Notes in Mathematics462. Springer, Berlin etc. (1975). Zbl0302.22002MR396859
  4. [4] Harish-Chandra: Discrete series for semisimple Lie groups I, Acta Math., 113 (1965) 241-318. Zbl0152.13402MR219665
  5. [5] Harish-Chandra: Discrete series for semisimple Lie groups II, Acta Math., 116 (1966) 1-111. Zbl0199.20102MR219666
  6. [6] Harish-Chandra: Harmonic analysis on real reductive groups I, J. Funct. Analysis, 19 (1975) 104-204. Zbl0315.43002MR399356
  7. [7] Harish-Chandra: Harmonic analysis on real reductive groups II, Inventiones Math., 36 (1976) 1-55. Zbl0341.43010MR439993
  8. [8] Harish-Chandra: Harmonic analysis on real reductive groups III, Annals of Math., 104 (1976) 117-201. Zbl0331.22007MR439994
  9. [9] H. Hecht and W. Schmid: A proof of Blattner's conjecture, Inventiones Math., 31 (1975) 129-154. Zbl0319.22012MR396855
  10. [10] T. Hirai: Explicit form of the characters of discrete series representations of semisimple Lie groups, Proc. Sympos. Pure Math., Amer. Math. Soc., 26 (1973) 281-288. Zbl0287.22013MR404529
  11. [11] R. Howe: Representation theory for division algebras over local fields (tamely ramified case), Bull. Amer. Math. Soc., 77 (1971) 1063-1066. Zbl0223.22009MR286939
  12. [12] H. Jacquet and R. Langlands: Automorphic forms on GL(2). Lecture Notes in Mathematics114, Springer, Berlin etc. (1970). Zbl0236.12010MR401654
  13. [13] A. Knapp: Commutativity of intertwining operators II, Bull. Amer. Math. Soc., 82 (1976) 271-273. Zbl0333.22006MR407203
  14. [14] A. Knapp and G. Zuckerman: "Classification theorems for representations of semisimple Lie groups." Lecture Notes in Mathematics587, Springer (1977) 138-159. Zbl0353.22011MR476923
  15. [15] A. Knapp and G. Zuckerman: "Classification of irreducible tempered representations of semisimple Lie groups." Proc. Nat. Acad. Sci. U.S.A., 73 (1976) 2178-2180. Zbl0329.22013MR460545
  16. [16]. G. Köthe: Topologische lineare Räume 1. Springer, Berlin etc. (1960). Zbl0093.11901MR130551
  17. [17] R. Langlands: "Problems in the theory of automorphic forms," Lectures in modern analysis and applications III. Lecture Notes in Mathematics 170, Springer, Berlin etc. (1970). Zbl0225.14022MR302614
  18. [18] R. Langlands: "On the classification of irreducible representations of real algebraic groups." Unpublished manuscript. Zbl0741.22009
  19. [19] R. Langlands: "Stable conjugacy: definitions and lemmas." (To appear in Can. J. Math.). Zbl0421.12013MR540901
  20. [20] J.-P. Labesse and R. Langlands: "L-indistinguishability for SL(2)." (To appear in Can. J. Math.). Zbl0421.12014MR540902
  21. [21] I. Satake: Classification theory of semisimple algebraic groups, Lecture Notes in Pure and Applied Mathematics3, Marcel Dekker, (1971). Zbl0226.20037MR316588
  22. [22] W. Schmid: Some properties of square-integrable representations of semisimple Lie groups, Annals of Math., 102 (1975) 535-564. Zbl0347.22011MR579165
  23. [23] D. Shelstad: "Some character relations for real reductive algebraic groups." Unpublished PhD. thesis, Yale University (1974). 
  24. [24] B. Speh and D. Vogan: "Reductibility of generalized principal series representations." (To appear). Zbl0457.22011MR590291
  25. [25] V. Varadarajan: The theory of characters and the discrete series for semisimple Lie groups, Proc. Sympos. Pure Math., Amer. Math. Soc., 26 (1973) 45-100. Zbl0295.22014MR409730
  26. [26] G. Warner: Harmonic analysis on semisimple Lie groups, two volumes. Springer, Berlin etc. (1972). 

Citations in EuDML Documents

top
  1. Diana Shelstad, Orbital integrals and a family of groups attached to a real reductive group
  2. Laurent Clozel, Changement de base pour les représentations tempérées des groupes réductifs réels
  3. Jeffrey Adams, Joseph F. Johnson, Endoscopic groups and packets of non-tempered representations
  4. Abderrazak Bouaziz, Intégrales orbitales sur les groupes de Lie réductifs
  5. Laurent Clozel, Représentations galoisiennes associées aux représentations automorphes autoduales de G L ( n )

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.