A classification of the nilpotent triangular matrices

Wim H. Hesselink

Compositio Mathematica (1985)

  • Volume: 55, Issue: 1, page 89-133
  • ISSN: 0010-437X

How to cite

top

Hesselink, Wim H.. "A classification of the nilpotent triangular matrices." Compositio Mathematica 55.1 (1985): 89-133. <http://eudml.org/doc/89711>.

@article{Hesselink1985,
author = {Hesselink, Wim H.},
journal = {Compositio Mathematica},
keywords = {nilpotent endomorphisms; flags; classification; strictly upper triangular matrices; fiber; Jordan blocks; typrix},
language = {eng},
number = {1},
pages = {89-133},
publisher = {Martinus Nijhoff Publishers},
title = {A classification of the nilpotent triangular matrices},
url = {http://eudml.org/doc/89711},
volume = {55},
year = {1985},
}

TY - JOUR
AU - Hesselink, Wim H.
TI - A classification of the nilpotent triangular matrices
JO - Compositio Mathematica
PY - 1985
PB - Martinus Nijhoff Publishers
VL - 55
IS - 1
SP - 89
EP - 133
LA - eng
KW - nilpotent endomorphisms; flags; classification; strictly upper triangular matrices; fiber; Jordan blocks; typrix
UR - http://eudml.org/doc/89711
ER -

References

top
  1. [1] A. Borel: Linear Algebraic Groups. Benjamin, New York (1969). Zbl0186.33201MR251042
  2. [2] W. Borho and J.-L. Brylinski: Differential operator on homogeneuous spaces I. Inventiones Math.69 (1982) 437-476. Zbl0504.22015MR679767
  3. [3] E. Brieskorn: Singular elements of semisimple algebraic groups. Actes du Congrès International des Mathématiciens 1970 (Nice), tome II, pp. 279-284. Zbl0223.22012MR437798
  4. [4] H. Bürgstein and W.H. Hesselink: Algorithmic orbit classification for connected solvable groups Preprint, Groningen (1984). Zbl0612.17005
  5. [5] H.S.M. Coxeter: Introduction to Geometry. Wiley, New York (1961). Zbl0095.34502MR123930
  6. [6] W.H. Hesselink: Schemes of linear configurations in projective plane. J. reine u. angewandte Math.348 (1984) 40-71. Zbl0518.14001MR733922
  7. [7] I.G. Macdonald: Symmetric Functions and Hall Polynomials. Clarendon, Oxford (1979). Zbl0487.20007MR553598
  8. [8] P. Slodowy: Simple Singularities and Simple Algebraic Groups. Springer, Berlin etc. (1980). Zbl0441.14002MR584445
  9. [9] N. Spaltenstein: The fixed point set of a unipotent transformation on the flag manifold. Indagationes Math.38 (1976) 452-456. Zbl0343.20029MR485901
  10. [10] N. Spaltenstein: Classes Unipotentes et Sous-groupes de Borel. Springer, Berlin etc. (1982). Zbl0486.20025MR672610
  11. [11] T.A. Springer: The unipotent variety of a semisimple group. In Proc. Bombay Coll. Algebraic Geometry 1968, pp. 373-391. Zbl0195.50803MR263830
  12. [12] T.A. Springer: Trigonometric sums, Green functions of finite groups and representations of Weyl groups. Inventiones Math.36 (1976) 173-207. Zbl0374.20054MR442103
  13. [13] T.A. Springer: Linear Algebraic Groups. Birkhäuser, Boston etc. (1981). Zbl0453.14022
  14. [14] R. Steinberg: On the desingularization of the unipotent variety. Inventiones Math.36 (1976) 209-224. Zbl0352.20035MR430094

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.