A classification of the nilpotent triangular matrices
Compositio Mathematica (1985)
- Volume: 55, Issue: 1, page 89-133
- ISSN: 0010-437X
Access Full Article
topHow to cite
topHesselink, Wim H.. "A classification of the nilpotent triangular matrices." Compositio Mathematica 55.1 (1985): 89-133. <http://eudml.org/doc/89711>.
@article{Hesselink1985,
author = {Hesselink, Wim H.},
journal = {Compositio Mathematica},
keywords = {nilpotent endomorphisms; flags; classification; strictly upper triangular matrices; fiber; Jordan blocks; typrix},
language = {eng},
number = {1},
pages = {89-133},
publisher = {Martinus Nijhoff Publishers},
title = {A classification of the nilpotent triangular matrices},
url = {http://eudml.org/doc/89711},
volume = {55},
year = {1985},
}
TY - JOUR
AU - Hesselink, Wim H.
TI - A classification of the nilpotent triangular matrices
JO - Compositio Mathematica
PY - 1985
PB - Martinus Nijhoff Publishers
VL - 55
IS - 1
SP - 89
EP - 133
LA - eng
KW - nilpotent endomorphisms; flags; classification; strictly upper triangular matrices; fiber; Jordan blocks; typrix
UR - http://eudml.org/doc/89711
ER -
References
top- [1] A. Borel: Linear Algebraic Groups. Benjamin, New York (1969). Zbl0186.33201MR251042
- [2] W. Borho and J.-L. Brylinski: Differential operator on homogeneuous spaces I. Inventiones Math.69 (1982) 437-476. Zbl0504.22015MR679767
- [3] E. Brieskorn: Singular elements of semisimple algebraic groups. Actes du Congrès International des Mathématiciens 1970 (Nice), tome II, pp. 279-284. Zbl0223.22012MR437798
- [4] H. Bürgstein and W.H. Hesselink: Algorithmic orbit classification for connected solvable groups Preprint, Groningen (1984). Zbl0612.17005
- [5] H.S.M. Coxeter: Introduction to Geometry. Wiley, New York (1961). Zbl0095.34502MR123930
- [6] W.H. Hesselink: Schemes of linear configurations in projective plane. J. reine u. angewandte Math.348 (1984) 40-71. Zbl0518.14001MR733922
- [7] I.G. Macdonald: Symmetric Functions and Hall Polynomials. Clarendon, Oxford (1979). Zbl0487.20007MR553598
- [8] P. Slodowy: Simple Singularities and Simple Algebraic Groups. Springer, Berlin etc. (1980). Zbl0441.14002MR584445
- [9] N. Spaltenstein: The fixed point set of a unipotent transformation on the flag manifold. Indagationes Math.38 (1976) 452-456. Zbl0343.20029MR485901
- [10] N. Spaltenstein: Classes Unipotentes et Sous-groupes de Borel. Springer, Berlin etc. (1982). Zbl0486.20025MR672610
- [11] T.A. Springer: The unipotent variety of a semisimple group. In Proc. Bombay Coll. Algebraic Geometry 1968, pp. 373-391. Zbl0195.50803MR263830
- [12] T.A. Springer: Trigonometric sums, Green functions of finite groups and representations of Weyl groups. Inventiones Math.36 (1976) 173-207. Zbl0374.20054MR442103
- [13] T.A. Springer: Linear Algebraic Groups. Birkhäuser, Boston etc. (1981). Zbl0453.14022
- [14] R. Steinberg: On the desingularization of the unipotent variety. Inventiones Math.36 (1976) 209-224. Zbl0352.20035MR430094
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.