Algorithmic orbit classification for some Borel group actions
Hartmut Bürgstein; Wim H. Hesselink
Compositio Mathematica (1987)
- Volume: 61, Issue: 1, page 3-41
- ISSN: 0010-437X
Access Full Article
topHow to cite
topBürgstein, Hartmut, and Hesselink, Wim H.. "Algorithmic orbit classification for some Borel group actions." Compositio Mathematica 61.1 (1987): 3-41. <http://eudml.org/doc/89813>.
@article{Bürgstein1987,
author = {Bürgstein, Hartmut, Hesselink, Wim H.},
journal = {Compositio Mathematica},
keywords = {nilpotent matrices; reductive algebraic group; Borel subgroup; algorithm; orbits},
language = {eng},
number = {1},
pages = {3-41},
publisher = {Martinus Nijhoff Publishers},
title = {Algorithmic orbit classification for some Borel group actions},
url = {http://eudml.org/doc/89813},
volume = {61},
year = {1987},
}
TY - JOUR
AU - Bürgstein, Hartmut
AU - Hesselink, Wim H.
TI - Algorithmic orbit classification for some Borel group actions
JO - Compositio Mathematica
PY - 1987
PB - Martinus Nijhoff Publishers
VL - 61
IS - 1
SP - 3
EP - 41
LA - eng
KW - nilpotent matrices; reductive algebraic group; Borel subgroup; algorithm; orbits
UR - http://eudml.org/doc/89813
ER -
References
top- [1] A.V. Aho, J.E. Hopcroft, J.D. Ullman: Data structures and algorithms. Addison-Wesley: Reading (1983). Zbl0487.68005MR666695
- [2] A. Altman, S. Kleiman: Introduction to Grothendieck duality theory. Springer: Berlin etc. (1970). Zbl0215.37201MR274461
- [3] A. Borel: Linear algebraic groups. Benjamin: New York (1969). Zbl0186.33201MR251042
- [4] W. Borho: Über Schichten halfbeinfacher Lie-Algebren. Inventiones math.65 (1981) 283-317. Zbl0484.17004MR641132
- [5] W. Borho, P. Gabriel, R. Rentschler: Primideale in Einhüllenden auflösbarer Lie-Algebren. Springer: Berlin etc. (1973). Zbl0293.17005MR376790
- [6] E. Brieskorn: Singular elements of semisimple algebraic groups. Actes du Congrès International des Mathématiciens1970, tomeII p. 279-284. Zbl0223.22012MR437798
- [7] I.B. Brodskii: On orbits of unipotent groups. Funct. Ana. Appl.3 (1969) 96-100. Zbl0197.30405MR257268
- [8] A. Grothendieck: Torsion homologique et sections rationelles. Séminaire Anneaux de Chow et appl.2 (1958).
- [9] A. Grothendieck, J.A. Dieudonné: Eléments de géométrie algébrique. Publ. Math. I.H.E.S.24 (1965). Zbl0135.39701
- [10] W.H. Hesselink: A classification of the nilpotent triangular matrices. Compositio Math.55 (1985) 89-133. Zbl0579.15011MR791648
- [11] D.A. Kazhdan, G. Lusztig: Representations of Coxeter groups and Hecke algebras. Inventiones math.53 (1979) 165-184. Zbl0499.20035MR560412
- [12] A.A. Kirillov: Elements of the theory of representations. Springer: Berlin etc. (1976). Zbl0342.22001MR412321
- [13] D. Mumford: Introduction to algebraic geometry (preliminary version of first 3 chapters) (1968).
- [14] V. Pyasetskii: Linear Lie groups acting with finitely many orbits. Funct. Ana. Appl.9 (1975) 351-353. Zbl0326.22004
- [15] N. Spaltenstein: On the fixed point set of a unipotent element on the variety of Borel subgroups. Topology16 (1977) 203-204. Zbl0445.20021MR447423
- [16] N. Spaltenstein: Classes unipotentes et sous-groupes de Borel. Springer: Berlin etc. (1982). Zbl0486.20025MR672610
- [17] T.A. Springer: Trigonometric sums, Green functions of finite groups and representations of Weyl groups. Inventiones math.36 (1976) 173-207. Zbl0374.20054MR442103
- [18] T.A. Springer: A construction of representations of Weyl groups. Inventiones math.44 (1978) 279-293. Zbl0376.17002MR491988
- [19] T.A. Springer: Linear algebraic groups. Birkhäuser: Boston etc. (1981). Zbl0453.14022
- [20] T.A. Springer, R. Steinberg: Conjugacy classes. Part E of: A. Borel et al.: Seminar on algebraic groups and related finite groups. Springer, Berlin etc. (1970). Zbl0249.20024MR268192
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.