Adjoint for double categories

Marco Grandis; Robert Pare

Cahiers de Topologie et Géométrie Différentielle Catégoriques (2004)

  • Volume: 45, Issue: 3, page 193-240
  • ISSN: 1245-530X

How to cite

top

Grandis, Marco, and Pare, Robert. "Adjoint for double categories." Cahiers de Topologie et Géométrie Différentielle Catégoriques 45.3 (2004): 193-240. <http://eudml.org/doc/91684>.

@article{Grandis2004,
author = {Grandis, Marco, Pare, Robert},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {double category; adjunction; double monad},
language = {eng},
number = {3},
pages = {193-240},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {Adjoint for double categories},
url = {http://eudml.org/doc/91684},
volume = {45},
year = {2004},
}

TY - JOUR
AU - Grandis, Marco
AU - Pare, Robert
TI - Adjoint for double categories
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 2004
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 45
IS - 3
SP - 193
EP - 240
LA - eng
KW - double category; adjunction; double monad
UR - http://eudml.org/doc/91684
ER -

References

top
  1. [AT] H. Applegate - M. Tierney, Categories with models, in: Seminar on triples and categorical homology theory, Lecture Notes in Mathematics80, Springer, Berlin1969, pp. 156-244. Zbl0188.28204MR242916
  2. [BE] A. Bastiani - C. Ehresmann, Multiple functors I. Limits relative to double categories, Cahiers Topologie Géom. Différentielle15 (1974), 215-292. Zbl0332.18005MR379626
  3. [BM] R. Brown - G. Mosa, Double categories, 2-categories, thin structures and connections, Theory Appl. Categ.5 (1999), 163-175 (electronic). http://tac.mta.ca/tac/ Zbl0918.18005MR1694653
  4. [BMM] R. Bruni - J. Meseguer - U. Montanari, Symmetric monoidal and Cartesian double categories as a semantic framework for tile logic, Math. Structures Comput. Sci.12 (2002), 53-90. Zbl0993.68058MR1887336
  5. [CR] A. Carboni - R. Rosebrugh, Lax monads, indexed monoidal monads, J. Pure Appl. Algebra76 (1991), 13-32. Zbl0749.18002MR1140637
  6. [Da] R. Dawson, A forbidden-suborder characterization of binarily-composable diagrams in double categories, Theory Appl. Categ.1 (1995), 146-155 (electronic). http://tac.mta.ca/tac/ Zbl0857.18008MR1353416
  7. [DP1] R. Dawson - R. Paré, General associativity and general composition for double categories, Cahiers Topologie Géom. Différentielle Catég.34 (1993), 57-79. Zbl0778.18005MR1213297
  8. [DP2] R. Dawson - R. Paré, What is a free double category like?, J. Pure Appl. Algebra168 (2002), 19-34. Zbl1008.18007MR1879928
  9. [E1] C. Ehresmann, Catégories structurées, Ann. Sci. Ecole Norm. Sup.80 (1963), 349-425. Zbl0128.02002MR197529
  10. [E2] C. Ehresmann, Catégories et structures, Dunod, Paris1965. Zbl0192.09803MR213410
  11. [Gr] M. Grandis, On distributive homological algebra, I. RE-categories, Cahiers Topologie Géom. Différentielle25 (1984), 259-301. Zbl0564.18005MR786552
  12. [GP] M. Grandis - R. Paré, Limits in double categories, Cahiers Topologie Géom. Différentielle Catég.40 (1999), 162-220. Zbl0939.18007MR1716779
  13. [Gu] R. Guitart, Tenseurs et machines, Cahiers Topologie Géom. Différentielle21 (1980), 5-62. Zbl0477.18007MR569117
  14. [Ke] G.M. Kelly, Doctrinal adjunction, in: Category Seminar (Sydney1972/73), Lecture Notes in Mathematics420, Springer, Berlin1974, pp. 257-280. Zbl0334.18004MR360749
  15. [LS] J. Lambek - P.J. Scott, Introduction to higher order categorical logic, Cambridge University Press, Cambridge1986. Zbl0596.03002MR856915
  16. [La] F.W. Lawvere, Metric spaces, generalized logic and closed categories, Rend. Sem. Mat. Fis. Univ. Milano43 (1974), 135-166. Republished in: Reprints Theory Appl. Categ.1 (2002), 1-37. Zbl0335.18006MR352214

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.