The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let be a nonincreasing sequence of positive real numbers. Denote by the index set and by , the set of all subsets of of cardinality , . In addition, denote by , , , the sum of arbitrary elements of sequence , where and . We consider bounds of the quantities , and in terms of and . Then we use the obtained results to generalize some results regarding Laplacian and normalized Laplacian eigenvalues of graphs.
Download Results (CSV)