Inequalities for real number sequences with applications in spectral graph theory

Emina Milovanović; Şerife Burcu Bozkurt Altındağ; Marjan Matejić; Igor Milovanović

Czechoslovak Mathematical Journal (2022)

  • Volume: 72, Issue: 3, page 783-799
  • ISSN: 0011-4642

Abstract

top
Let a = ( a 1 , a 2 , ... , a n ) be a nonincreasing sequence of positive real numbers. Denote by S = { 1 , 2 , ... , n } the index set and by J k = { I = { r 1 , r 2 , ... , r k } , 1 r 1 < r 2 < < r k n } the set of all subsets of S of cardinality k , 1 k n - 1 . In addition, denote by a I = a r 1 + a r 2 + + a r k , 1 k n - 1 , 1 r 1 < r 2 < < r k n , the sum of k arbitrary elements of sequence a , where a I 1 = a 1 + a 2 + + a k and a I n = a n - k + 1 + a n - k + 2 + + a n . We consider bounds of the quantities R S k ( a ) = a I 1 / a I n , L S k ( a ) = a I 1 - a I n and S k , α ( a ) = I J k a I α in terms of A = i = 1 n a i and B = i = 1 n a i 2 . Then we use the obtained results to generalize some results regarding Laplacian and normalized Laplacian eigenvalues of graphs.

How to cite

top

Milovanović, Emina, et al. "Inequalities for real number sequences with applications in spectral graph theory." Czechoslovak Mathematical Journal 72.3 (2022): 783-799. <http://eudml.org/doc/298414>.

@article{Milovanović2022,
abstract = {Let $a=(a_\{1\},a_\{2\},\ldots ,a_\{n\})$ be a nonincreasing sequence of positive real numbers. Denote by $S=\lbrace 1,2,\ldots ,n\rbrace $ the index set and by $J_\{k\}=\lbrace I= \lbrace r_\{1\},r_\{2\},\ldots ,r_\{k\} \rbrace $, $1\le r_\{1\}<r_\{2\}< \cdots <r_\{k\}\le n\rbrace $ the set of all subsets of $S$ of cardinality $k$, $1\le k\le n-1$. In addition, denote by $a_\{I\}=a_\{r_\{1\}\}+a_\{r_\{2\}\}+\cdots +a_\{r_\{k\}\}$, $1\le k\le n-1$, $1\le r_\{1\}<r_\{2\}<\cdots <r_\{k\}\le n$, the sum of $k$ arbitrary elements of sequence $a$, where $a_\{I_\{1\}\}=a_\{1\}+a_\{2\}+\cdots +a_\{k\}$ and $a_\{I_\{n\}\}=a_\{n-k+1\}+a_\{n-k+2\}+\cdots +a_\{n\}$. We consider bounds of the quantities $RS_\{k\}(a)=a_\{I_\{1\}\}/a_\{I_\{n\}\}$, $LS_\{k\}(a)=a_\{I_\{1\}\}-a_\{I_\{n\}\}$ and $S_\{k,\alpha \}(a)=\sum _\{I\in J_\{k\}\}a_\{I\}^\{\alpha \}$ in terms of $A=\sum _\{i=1\}^\{n\}a_\{i\}$ and $B=\sum _\{i=1\}^\{n\}a_\{i\}^\{2\}$. Then we use the obtained results to generalize some results regarding Laplacian and normalized Laplacian eigenvalues of graphs.},
author = {Milovanović, Emina, Bozkurt Altındağ, Şerife Burcu, Matejić, Marjan, Milovanović, Igor},
journal = {Czechoslovak Mathematical Journal},
keywords = {inequality; real number sequence; Laplacian eigenvalue of graph; normalized Laplacian eigenvalue},
language = {eng},
number = {3},
pages = {783-799},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Inequalities for real number sequences with applications in spectral graph theory},
url = {http://eudml.org/doc/298414},
volume = {72},
year = {2022},
}

TY - JOUR
AU - Milovanović, Emina
AU - Bozkurt Altındağ, Şerife Burcu
AU - Matejić, Marjan
AU - Milovanović, Igor
TI - Inequalities for real number sequences with applications in spectral graph theory
JO - Czechoslovak Mathematical Journal
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 72
IS - 3
SP - 783
EP - 799
AB - Let $a=(a_{1},a_{2},\ldots ,a_{n})$ be a nonincreasing sequence of positive real numbers. Denote by $S=\lbrace 1,2,\ldots ,n\rbrace $ the index set and by $J_{k}=\lbrace I= \lbrace r_{1},r_{2},\ldots ,r_{k} \rbrace $, $1\le r_{1}<r_{2}< \cdots <r_{k}\le n\rbrace $ the set of all subsets of $S$ of cardinality $k$, $1\le k\le n-1$. In addition, denote by $a_{I}=a_{r_{1}}+a_{r_{2}}+\cdots +a_{r_{k}}$, $1\le k\le n-1$, $1\le r_{1}<r_{2}<\cdots <r_{k}\le n$, the sum of $k$ arbitrary elements of sequence $a$, where $a_{I_{1}}=a_{1}+a_{2}+\cdots +a_{k}$ and $a_{I_{n}}=a_{n-k+1}+a_{n-k+2}+\cdots +a_{n}$. We consider bounds of the quantities $RS_{k}(a)=a_{I_{1}}/a_{I_{n}}$, $LS_{k}(a)=a_{I_{1}}-a_{I_{n}}$ and $S_{k,\alpha }(a)=\sum _{I\in J_{k}}a_{I}^{\alpha }$ in terms of $A=\sum _{i=1}^{n}a_{i}$ and $B=\sum _{i=1}^{n}a_{i}^{2}$. Then we use the obtained results to generalize some results regarding Laplacian and normalized Laplacian eigenvalues of graphs.
LA - eng
KW - inequality; real number sequence; Laplacian eigenvalue of graph; normalized Laplacian eigenvalue
UR - http://eudml.org/doc/298414
ER -

References

top
  1. Andrade, E., Freitas, M. A. A. de, Robbiano, M., Rodríguez, J., 10.1016/j.laa.2017.07.037, Linear Algebra Appl. 544 (2018), 254-272. (2018) Zbl1388.05108MR3765785DOI10.1016/j.laa.2017.07.037
  2. Bianchi, M., Cornaro, A., Palacios, J. L., Torriero, A., 10.1007/s10910-012-0103-x, J. Math. Chem. 51 (2013), 569-587. (2013) Zbl1327.05066MR3017758DOI10.1007/s10910-012-0103-x
  3. Butler, S. K., Eigenvalues and Structures of Graphs: Ph.D. Thesis, University of California, San Diego (2008). (2008) MR2711548
  4. Cavers, M., Fallat, S., Kirkland, S., 10.1016/j.laa.2010.02.002, Linear Algebra Appl. 433 (2010), 172-190. (2010) Zbl1217.05138MR2645076DOI10.1016/j.laa.2010.02.002
  5. Chen, X., Das, K. C., 10.1016/j.laa.2016.05.002, Linear Algebra Appl. 505 (2016), 245-260. (2016) Zbl1338.05158MR3506494DOI10.1016/j.laa.2016.05.002
  6. Chen, X., Qian, J., 10.1007/s11766-011-2732-4, Appl. Math., Ser. B (Engl. Ed.) 26 (2011), 142-150. (2011) Zbl1240.05186MR2810546DOI10.1007/s11766-011-2732-4
  7. Chung, F. R. K., 10.1090/cbms/092, Regional Conference Series in Mathematics 92. AMS, Providence (1997). (1997) Zbl0867.05046MR1421568DOI10.1090/cbms/092
  8. Edwards, C. S., 10.1112/blms/9.2.203, Bull. Lond. Math. Soc. 9 (1977), 203-208. (1977) Zbl0357.05058MR0463005DOI10.1112/blms/9.2.203
  9. Fath-Tabar, G. H., Ashrafi, A. R., Some remarks on Laplacian eigenvalues and Laplacian energy of graphs, Math. Commun. 15 (2010), 443-451. (2010) Zbl1206.05062MR2814304
  10. Goldberg, F., 10.1016/j.laa.2005.07.007, Linear Algebra Appl. 416 (2006), 68-74. (2006) Zbl1107.05059MR2232920DOI10.1016/j.laa.2005.07.007
  11. Grone, R., Merris, R., 10.1137/S0895480191222653, SIAM J. Discrete Math. 7 (1994), 221-229. (1994) Zbl0795.05092MR1271994DOI10.1137/S0895480191222653
  12. Gutman, I., Trinajstić, N., 10.1016/0009-2614(72)85099-1, Chem. Phys. Lett. 17 (1972), 535-538. (1972) DOI10.1016/0009-2614(72)85099-1
  13. Hakimi-Nezhaad, M., Ashrafi, A. R., 10.3103/S106836231405001X, J. Contemp. Math. Anal., Armen. Acad. Sci. 49 (2014), 207-211. (2014) Zbl1312.05082MR3379554DOI10.3103/S106836231405001X
  14. Huang, J., Li, S., 10.1017/S0004972715000027, Bul. Aust. Math. Soc. 91 (2015), 353-367. (2015) Zbl1326.05082MR3338961DOI10.1017/S0004972715000027
  15. Jensen, J. L. W. V., 10.1007/BF02418571, Acta Math. 30 (1906), 175-193 French 9999JFM99999 37.0422.02. (1906) MR1555027DOI10.1007/BF02418571
  16. Kemeny, J. G., Snell, J. L., Finite Markov Chains, The University Series in Undergraduate Mathematics. Van Nostrand, Princeton (1960). (1960) Zbl0089.13704MR0115196
  17. Li, J., Guo, J.-M., Shiu, W. C., ndağ, Ş. B. B. Altı, Bozkurt, D., 10.1016/j.amc.2017.12.003, Appl. Math. Comput. 324 (2018), 82-92. (2018) Zbl1426.05101MR3743658DOI10.1016/j.amc.2017.12.003
  18. Merris, R., 10.1016/0024-3795(94)90486-3, Linear Algebra Appl. 197-198 (1994), 143-176. (1994) Zbl0802.05053MR1275613DOI10.1016/0024-3795(94)90486-3
  19. Milovanović, I. Ž., Milovanović, E. I., Glogić, E., 10.5937/SPSUNP1501025M, Sci. Publ. State Univ. Novi Pazar, Ser. A, Appl. Math. Inf. Mech. 7 (2015), 25-31. (2015) DOI10.5937/SPSUNP1501025M
  20. Milovanović, I. Ž., Milovanović, E. I., Glogić, E., 10.1007/s10587-015-0191-4, Czech. Math. J. 65 (2015), 529-535. (2015) Zbl1363.15016MR3360442DOI10.1007/s10587-015-0191-4
  21. Milovanović, I. Ž., Milovanović, E. I., Bounds for the Kirchhoff and degree Kirchhoff indices, Bounds in Chemical Graph Theory: Mainstreams Mathematical Chemistry Monographs 20. University of Kragujevac, Kragujevac (2017), 93-119. (2017) MR3403904
  22. Mitrinović, D. S., Pečarić, J. E., Fink, A. M., 10.1007/978-94-017-1043-5, Mathematics and Its Applications. East European Series 61. Kluwer Academic Publishers, Dorchrecht (1993). (1993) Zbl0771.26009MR1220224DOI10.1007/978-94-017-1043-5
  23. Nikiforov, V., 10.1016/j.jmaa.2006.03.072, J. Math. Anal. Appl. 326 (2007), 1472-1475. (2007) Zbl1113.15016MR2280998DOI10.1016/j.jmaa.2006.03.072
  24. Nordhaus, E. A., Gaddum, J. W., 10.2307/2306658, Am. Math. Mon. 63 (1956), 175-177. (1956) Zbl0070.18503MR0078685DOI10.2307/2306658
  25. Ozeki, N., On the estimation of the inequalities by the maximum, or minimum values, J. College Arts Sci. Chiba Univ. 5 (1968), 199-203 Japanese. (1968) MR0254198
  26. Palacios, J. L., Some inequalities for Laplacian descriptors via majorization, MATCH Commun. Math. Comput. Chem. 77 (2017), 189-194. (2017) Zbl1466.92279MR3645376
  27. Palacios, J. L., Renom, J. M., 10.1002/qua.22396, Int. J. Quantum Chem. 111 (2011), 35-39. (2011) DOI10.1002/qua.22396
  28. Shi, L., 10.1016/j.disc.2009.03.036, Discr. Math. 309 (2009), 5238-5241. (2009) Zbl1179.05039MR2548924DOI10.1016/j.disc.2009.03.036
  29. Shi, L., Wang, H., 10.1016/j.laa.2013.10.028, Linear Algebra Appl. 439 (2013), 4056-4062. (2013) Zbl1282.05152MR3133474DOI10.1016/j.laa.2013.10.028
  30. You, Z., Liu, B., 10.1016/j.aml.2011.09.071, Appl. Math. Lett. 25 (2012), 1245-1250. (2012) Zbl1248.05116MR2947387DOI10.1016/j.aml.2011.09.071
  31. You, Z., Liu, B., 10.1007/s10587-012-0003-z, Czech. Math. J. 62 (2012), 155-168. (2012) Zbl1245.05089MR2899742DOI10.1007/s10587-012-0003-z
  32. Zhou, B., 10.1016/j.laa.2008.06.023, Linear Algebra Appl. 429 (2008), 2239-2246. (2008) Zbl1144.05325MR2446656DOI10.1016/j.laa.2008.06.023
  33. Zumstein, P., Comparison of Spectral Methods Through the Adjacency Matrix and the Laplacian of a Graph: Diploma Thesis, ETH, Zürich (2005). (2005) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.