Inequalities for real number sequences with applications in spectral graph theory
Emina Milovanović; Şerife Burcu Bozkurt Altındağ; Marjan Matejić; Igor Milovanović
Czechoslovak Mathematical Journal (2022)
- Volume: 72, Issue: 3, page 783-799
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topMilovanović, Emina, et al. "Inequalities for real number sequences with applications in spectral graph theory." Czechoslovak Mathematical Journal 72.3 (2022): 783-799. <http://eudml.org/doc/298414>.
@article{Milovanović2022,
abstract = {Let $a=(a_\{1\},a_\{2\},\ldots ,a_\{n\})$ be a nonincreasing sequence of positive real numbers. Denote by $S=\lbrace 1,2,\ldots ,n\rbrace $ the index set and by $J_\{k\}=\lbrace I= \lbrace r_\{1\},r_\{2\},\ldots ,r_\{k\} \rbrace $, $1\le r_\{1\}<r_\{2\}< \cdots <r_\{k\}\le n\rbrace $ the set of all subsets of $S$ of cardinality $k$, $1\le k\le n-1$. In addition, denote by $a_\{I\}=a_\{r_\{1\}\}+a_\{r_\{2\}\}+\cdots +a_\{r_\{k\}\}$, $1\le k\le n-1$, $1\le r_\{1\}<r_\{2\}<\cdots <r_\{k\}\le n$, the sum of $k$ arbitrary elements of sequence $a$, where $a_\{I_\{1\}\}=a_\{1\}+a_\{2\}+\cdots +a_\{k\}$ and $a_\{I_\{n\}\}=a_\{n-k+1\}+a_\{n-k+2\}+\cdots +a_\{n\}$. We consider bounds of the quantities $RS_\{k\}(a)=a_\{I_\{1\}\}/a_\{I_\{n\}\}$, $LS_\{k\}(a)=a_\{I_\{1\}\}-a_\{I_\{n\}\}$ and $S_\{k,\alpha \}(a)=\sum _\{I\in J_\{k\}\}a_\{I\}^\{\alpha \}$ in terms of $A=\sum _\{i=1\}^\{n\}a_\{i\}$ and $B=\sum _\{i=1\}^\{n\}a_\{i\}^\{2\}$. Then we use the obtained results to generalize some results regarding Laplacian and normalized Laplacian eigenvalues of graphs.},
author = {Milovanović, Emina, Bozkurt Altındağ, Şerife Burcu, Matejić, Marjan, Milovanović, Igor},
journal = {Czechoslovak Mathematical Journal},
keywords = {inequality; real number sequence; Laplacian eigenvalue of graph; normalized Laplacian eigenvalue},
language = {eng},
number = {3},
pages = {783-799},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Inequalities for real number sequences with applications in spectral graph theory},
url = {http://eudml.org/doc/298414},
volume = {72},
year = {2022},
}
TY - JOUR
AU - Milovanović, Emina
AU - Bozkurt Altındağ, Şerife Burcu
AU - Matejić, Marjan
AU - Milovanović, Igor
TI - Inequalities for real number sequences with applications in spectral graph theory
JO - Czechoslovak Mathematical Journal
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 72
IS - 3
SP - 783
EP - 799
AB - Let $a=(a_{1},a_{2},\ldots ,a_{n})$ be a nonincreasing sequence of positive real numbers. Denote by $S=\lbrace 1,2,\ldots ,n\rbrace $ the index set and by $J_{k}=\lbrace I= \lbrace r_{1},r_{2},\ldots ,r_{k} \rbrace $, $1\le r_{1}<r_{2}< \cdots <r_{k}\le n\rbrace $ the set of all subsets of $S$ of cardinality $k$, $1\le k\le n-1$. In addition, denote by $a_{I}=a_{r_{1}}+a_{r_{2}}+\cdots +a_{r_{k}}$, $1\le k\le n-1$, $1\le r_{1}<r_{2}<\cdots <r_{k}\le n$, the sum of $k$ arbitrary elements of sequence $a$, where $a_{I_{1}}=a_{1}+a_{2}+\cdots +a_{k}$ and $a_{I_{n}}=a_{n-k+1}+a_{n-k+2}+\cdots +a_{n}$. We consider bounds of the quantities $RS_{k}(a)=a_{I_{1}}/a_{I_{n}}$, $LS_{k}(a)=a_{I_{1}}-a_{I_{n}}$ and $S_{k,\alpha }(a)=\sum _{I\in J_{k}}a_{I}^{\alpha }$ in terms of $A=\sum _{i=1}^{n}a_{i}$ and $B=\sum _{i=1}^{n}a_{i}^{2}$. Then we use the obtained results to generalize some results regarding Laplacian and normalized Laplacian eigenvalues of graphs.
LA - eng
KW - inequality; real number sequence; Laplacian eigenvalue of graph; normalized Laplacian eigenvalue
UR - http://eudml.org/doc/298414
ER -
References
top- Andrade, E., Freitas, M. A. A. de, Robbiano, M., Rodríguez, J., 10.1016/j.laa.2017.07.037, Linear Algebra Appl. 544 (2018), 254-272. (2018) Zbl1388.05108MR3765785DOI10.1016/j.laa.2017.07.037
- Bianchi, M., Cornaro, A., Palacios, J. L., Torriero, A., 10.1007/s10910-012-0103-x, J. Math. Chem. 51 (2013), 569-587. (2013) Zbl1327.05066MR3017758DOI10.1007/s10910-012-0103-x
- Butler, S. K., Eigenvalues and Structures of Graphs: Ph.D. Thesis, University of California, San Diego (2008). (2008) MR2711548
- Cavers, M., Fallat, S., Kirkland, S., 10.1016/j.laa.2010.02.002, Linear Algebra Appl. 433 (2010), 172-190. (2010) Zbl1217.05138MR2645076DOI10.1016/j.laa.2010.02.002
- Chen, X., Das, K. C., 10.1016/j.laa.2016.05.002, Linear Algebra Appl. 505 (2016), 245-260. (2016) Zbl1338.05158MR3506494DOI10.1016/j.laa.2016.05.002
- Chen, X., Qian, J., 10.1007/s11766-011-2732-4, Appl. Math., Ser. B (Engl. Ed.) 26 (2011), 142-150. (2011) Zbl1240.05186MR2810546DOI10.1007/s11766-011-2732-4
- Chung, F. R. K., 10.1090/cbms/092, Regional Conference Series in Mathematics 92. AMS, Providence (1997). (1997) Zbl0867.05046MR1421568DOI10.1090/cbms/092
- Edwards, C. S., 10.1112/blms/9.2.203, Bull. Lond. Math. Soc. 9 (1977), 203-208. (1977) Zbl0357.05058MR0463005DOI10.1112/blms/9.2.203
- Fath-Tabar, G. H., Ashrafi, A. R., Some remarks on Laplacian eigenvalues and Laplacian energy of graphs, Math. Commun. 15 (2010), 443-451. (2010) Zbl1206.05062MR2814304
- Goldberg, F., 10.1016/j.laa.2005.07.007, Linear Algebra Appl. 416 (2006), 68-74. (2006) Zbl1107.05059MR2232920DOI10.1016/j.laa.2005.07.007
- Grone, R., Merris, R., 10.1137/S0895480191222653, SIAM J. Discrete Math. 7 (1994), 221-229. (1994) Zbl0795.05092MR1271994DOI10.1137/S0895480191222653
- Gutman, I., Trinajstić, N., 10.1016/0009-2614(72)85099-1, Chem. Phys. Lett. 17 (1972), 535-538. (1972) DOI10.1016/0009-2614(72)85099-1
- Hakimi-Nezhaad, M., Ashrafi, A. R., 10.3103/S106836231405001X, J. Contemp. Math. Anal., Armen. Acad. Sci. 49 (2014), 207-211. (2014) Zbl1312.05082MR3379554DOI10.3103/S106836231405001X
- Huang, J., Li, S., 10.1017/S0004972715000027, Bul. Aust. Math. Soc. 91 (2015), 353-367. (2015) Zbl1326.05082MR3338961DOI10.1017/S0004972715000027
- Jensen, J. L. W. V., 10.1007/BF02418571, Acta Math. 30 (1906), 175-193 French 9999JFM99999 37.0422.02. (1906) MR1555027DOI10.1007/BF02418571
- Kemeny, J. G., Snell, J. L., Finite Markov Chains, The University Series in Undergraduate Mathematics. Van Nostrand, Princeton (1960). (1960) Zbl0089.13704MR0115196
- Li, J., Guo, J.-M., Shiu, W. C., ndağ, Ş. B. B. Altı, Bozkurt, D., 10.1016/j.amc.2017.12.003, Appl. Math. Comput. 324 (2018), 82-92. (2018) Zbl1426.05101MR3743658DOI10.1016/j.amc.2017.12.003
- Merris, R., 10.1016/0024-3795(94)90486-3, Linear Algebra Appl. 197-198 (1994), 143-176. (1994) Zbl0802.05053MR1275613DOI10.1016/0024-3795(94)90486-3
- Milovanović, I. Ž., Milovanović, E. I., Glogić, E., 10.5937/SPSUNP1501025M, Sci. Publ. State Univ. Novi Pazar, Ser. A, Appl. Math. Inf. Mech. 7 (2015), 25-31. (2015) DOI10.5937/SPSUNP1501025M
- Milovanović, I. Ž., Milovanović, E. I., Glogić, E., 10.1007/s10587-015-0191-4, Czech. Math. J. 65 (2015), 529-535. (2015) Zbl1363.15016MR3360442DOI10.1007/s10587-015-0191-4
- Milovanović, I. Ž., Milovanović, E. I., Bounds for the Kirchhoff and degree Kirchhoff indices, Bounds in Chemical Graph Theory: Mainstreams Mathematical Chemistry Monographs 20. University of Kragujevac, Kragujevac (2017), 93-119. (2017) MR3403904
- Mitrinović, D. S., Pečarić, J. E., Fink, A. M., 10.1007/978-94-017-1043-5, Mathematics and Its Applications. East European Series 61. Kluwer Academic Publishers, Dorchrecht (1993). (1993) Zbl0771.26009MR1220224DOI10.1007/978-94-017-1043-5
- Nikiforov, V., 10.1016/j.jmaa.2006.03.072, J. Math. Anal. Appl. 326 (2007), 1472-1475. (2007) Zbl1113.15016MR2280998DOI10.1016/j.jmaa.2006.03.072
- Nordhaus, E. A., Gaddum, J. W., 10.2307/2306658, Am. Math. Mon. 63 (1956), 175-177. (1956) Zbl0070.18503MR0078685DOI10.2307/2306658
- Ozeki, N., On the estimation of the inequalities by the maximum, or minimum values, J. College Arts Sci. Chiba Univ. 5 (1968), 199-203 Japanese. (1968) MR0254198
- Palacios, J. L., Some inequalities for Laplacian descriptors via majorization, MATCH Commun. Math. Comput. Chem. 77 (2017), 189-194. (2017) Zbl1466.92279MR3645376
- Palacios, J. L., Renom, J. M., 10.1002/qua.22396, Int. J. Quantum Chem. 111 (2011), 35-39. (2011) DOI10.1002/qua.22396
- Shi, L., 10.1016/j.disc.2009.03.036, Discr. Math. 309 (2009), 5238-5241. (2009) Zbl1179.05039MR2548924DOI10.1016/j.disc.2009.03.036
- Shi, L., Wang, H., 10.1016/j.laa.2013.10.028, Linear Algebra Appl. 439 (2013), 4056-4062. (2013) Zbl1282.05152MR3133474DOI10.1016/j.laa.2013.10.028
- You, Z., Liu, B., 10.1016/j.aml.2011.09.071, Appl. Math. Lett. 25 (2012), 1245-1250. (2012) Zbl1248.05116MR2947387DOI10.1016/j.aml.2011.09.071
- You, Z., Liu, B., 10.1007/s10587-012-0003-z, Czech. Math. J. 62 (2012), 155-168. (2012) Zbl1245.05089MR2899742DOI10.1007/s10587-012-0003-z
- Zhou, B., 10.1016/j.laa.2008.06.023, Linear Algebra Appl. 429 (2008), 2239-2246. (2008) Zbl1144.05325MR2446656DOI10.1016/j.laa.2008.06.023
- Zumstein, P., Comparison of Spectral Methods Through the Adjacency Matrix and the Laplacian of a Graph: Diploma Thesis, ETH, Zürich (2005). (2005)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.