We deal with a posteriori error estimates of the discontinuous Galerkin method applied to the nonstationary heat conduction equation. The problem is discretized in time by the backward Euler scheme and a posteriori error analysis is based on the Helmholtz decomposition.
We deal with the numerical solution of the nonstationary heat conduction equation with mixed Dirichlet/Neumann boundary conditions. The backward Euler method is employed for the time discretization and the interior penalty discontinuous Galerkin method for the space discretization. Assuming shape regularity, local quasi-uniformity, and transition conditions, we derive both a posteriori upper and lower error bounds. The analysis is based on the Helmholtz decomposition, the averaging interpolation...
Download Results (CSV)