A posteriori upper and lower error bound of the high-order discontinuous Galerkin method for the heat conduction equation
Applications of Mathematics (2014)
- Volume: 59, Issue: 2, page 121-144
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topŠebestová, Ivana. "A posteriori upper and lower error bound of the high-order discontinuous Galerkin method for the heat conduction equation." Applications of Mathematics 59.2 (2014): 121-144. <http://eudml.org/doc/261064>.
@article{Šebestová2014,
abstract = {We deal with the numerical solution of the nonstationary heat conduction equation with mixed Dirichlet/Neumann boundary conditions. The backward Euler method is employed for the time discretization and the interior penalty discontinuous Galerkin method for the space discretization. Assuming shape regularity, local quasi-uniformity, and transition conditions, we derive both a posteriori upper and lower error bounds. The analysis is based on the Helmholtz decomposition, the averaging interpolation operator, and on the use of cut-off functions. Numerical experiments are presented.},
author = {Šebestová, Ivana},
journal = {Applications of Mathematics},
keywords = {discontinuous Galerkin method; Helmholtz decomposition; averaging interpolation operator; Euler backward scheme; residual-based a posteriori error estimate; local cut-off function; discontinuous Galerkin method; Helmholtz decomposition; averaging interpolation operator; Euler backward scheme; residual-based a posteriori error estimate; local cut-off function; nonstationary heat conduction equation; numerical experiments},
language = {eng},
number = {2},
pages = {121-144},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A posteriori upper and lower error bound of the high-order discontinuous Galerkin method for the heat conduction equation},
url = {http://eudml.org/doc/261064},
volume = {59},
year = {2014},
}
TY - JOUR
AU - Šebestová, Ivana
TI - A posteriori upper and lower error bound of the high-order discontinuous Galerkin method for the heat conduction equation
JO - Applications of Mathematics
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 59
IS - 2
SP - 121
EP - 144
AB - We deal with the numerical solution of the nonstationary heat conduction equation with mixed Dirichlet/Neumann boundary conditions. The backward Euler method is employed for the time discretization and the interior penalty discontinuous Galerkin method for the space discretization. Assuming shape regularity, local quasi-uniformity, and transition conditions, we derive both a posteriori upper and lower error bounds. The analysis is based on the Helmholtz decomposition, the averaging interpolation operator, and on the use of cut-off functions. Numerical experiments are presented.
LA - eng
KW - discontinuous Galerkin method; Helmholtz decomposition; averaging interpolation operator; Euler backward scheme; residual-based a posteriori error estimate; local cut-off function; discontinuous Galerkin method; Helmholtz decomposition; averaging interpolation operator; Euler backward scheme; residual-based a posteriori error estimate; local cut-off function; nonstationary heat conduction equation; numerical experiments
UR - http://eudml.org/doc/261064
ER -
References
top- Ainsworth, M., 10.1137/060665993, SIAM J. Numer. Anal. 45 (2007), 1777-1798. (2007) Zbl1151.65083MR2338409DOI10.1137/060665993
- Arnold, D. N., Brezzi, F., Cockburn, B., Marini, L. D., 10.1137/S0036142901384162, SIAM J. Numer. Anal. 39 (2002), 1749-1779. (2002) Zbl1008.65080MR1885715DOI10.1137/S0036142901384162
- Becker, R., Hansbo, P., Larson, M. G., 10.1016/S0045-7825(02)00593-5, Comput. Methods Appl. Mech. Eng. 192 (2003), 723-733. (2003) Zbl1042.65083MR1952357DOI10.1016/S0045-7825(02)00593-5
- Dari, E., Duran, R., Padra, C., Vampa, V., 10.1051/m2an/1996300403851, RAIRO, Modélisation Math. Anal. Numér. 30 (1996), 385-400. (1996) Zbl0853.65110MR1399496DOI10.1051/m2an/1996300403851
- Ern, A., Vohralík, M., 10.1137/090759008, SIAM J. Numer. Anal. 48 (2010), 198-223. (2010) Zbl1215.65152MR2608366DOI10.1137/090759008
- Feistauer, M., Dolejší, V., Kučera, V., Sobotíková, V., 10.1515/JNUM.2009.004, J. Numer. Math. 17 (2009), 45-65. (2009) Zbl1171.65064MR2541520DOI10.1515/JNUM.2009.004
- Girault, V., Raviart, P.-A., Finite Element Methods for Navier-Stokes Equations. Theory and algorithms. (Extended version of the 1979 publ.), Springer Series in Computational Mathematics 5 Springer, Berlin (1986). (1986) Zbl0585.65077MR0851383
- Karakashian, O. A., Pascal, F., 10.1137/S0036142902405217, SIAM J. Numer. Anal. 41 (2003), 2374-2399. (2003) Zbl1058.65120MR2034620DOI10.1137/S0036142902405217
- Karakashian, O. A., Pascal, F., Adaptive discontinuous Galerkin approximations of second-order elliptic problems, European Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS 2004 P. Neittaanmäki et al. University of Jyväskylä Jyväskylä (2004). (2004)
- Karakashian, O. A., Pascal, F., 10.1137/05063979X, SIAM J. Numer. Anal. 45 (2007), 641-665. (2007) Zbl1140.65083MR2300291DOI10.1137/05063979X
- Nečas, J., Direct methods in the theory of elliptic equations, Academia Prague (1967); Masson et Cie, Paris, 1967, French. (1967) Zbl1225.35003
- Nicaise, S., Soualem, N., 10.1051/m2an:2005009, ESAIM, Math. Model. Numer. Anal. 39 (2005), 319-348. (2005) Zbl1078.65079MR2143951DOI10.1051/m2an:2005009
- Repin, S., Estimates of deviations from exact solutions of initial-boundary value problem for the heat equation, Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl. 13 (2002), 121-133. (2002) Zbl1221.65244MR1949485
- Šebestová, I., A posteriori error estimates of the discontinuous Galerkin method for convection-diffusion equations. Master Thesis, Charles University in Prague Prague (2009). (2009)
- Šebestová, I., Dolejší, V., A posteriori error estimates of the discontinuous Galerkin method for the heat conduction equation, Acta Univ. Carol., Math. Phys. 53 (2012), 77-94. (2012) Zbl1280.65098MR3099403
- Verfürth, R., 10.1007/s10092-003-0073-2, Calcolo 40 (2003), 195-212. (2003) Zbl1168.65418MR2025602DOI10.1007/s10092-003-0073-2
- Verfürth, R., A review of a posteriori error estimation and adaptive mesh-refinement techniques, Wiley-Teubner Series Advances in Numerical Mathematics John Wiley & Sons, Chichester (1996). (1996) Zbl0853.65108
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.