A posteriori upper and lower error bound of the high-order discontinuous Galerkin method for the heat conduction equation

Ivana Šebestová

Applications of Mathematics (2014)

  • Volume: 59, Issue: 2, page 121-144
  • ISSN: 0862-7940

Abstract

top
We deal with the numerical solution of the nonstationary heat conduction equation with mixed Dirichlet/Neumann boundary conditions. The backward Euler method is employed for the time discretization and the interior penalty discontinuous Galerkin method for the space discretization. Assuming shape regularity, local quasi-uniformity, and transition conditions, we derive both a posteriori upper and lower error bounds. The analysis is based on the Helmholtz decomposition, the averaging interpolation operator, and on the use of cut-off functions. Numerical experiments are presented.

How to cite

top

Šebestová, Ivana. "A posteriori upper and lower error bound of the high-order discontinuous Galerkin method for the heat conduction equation." Applications of Mathematics 59.2 (2014): 121-144. <http://eudml.org/doc/261064>.

@article{Šebestová2014,
abstract = {We deal with the numerical solution of the nonstationary heat conduction equation with mixed Dirichlet/Neumann boundary conditions. The backward Euler method is employed for the time discretization and the interior penalty discontinuous Galerkin method for the space discretization. Assuming shape regularity, local quasi-uniformity, and transition conditions, we derive both a posteriori upper and lower error bounds. The analysis is based on the Helmholtz decomposition, the averaging interpolation operator, and on the use of cut-off functions. Numerical experiments are presented.},
author = {Šebestová, Ivana},
journal = {Applications of Mathematics},
keywords = {discontinuous Galerkin method; Helmholtz decomposition; averaging interpolation operator; Euler backward scheme; residual-based a posteriori error estimate; local cut-off function; discontinuous Galerkin method; Helmholtz decomposition; averaging interpolation operator; Euler backward scheme; residual-based a posteriori error estimate; local cut-off function; nonstationary heat conduction equation; numerical experiments},
language = {eng},
number = {2},
pages = {121-144},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A posteriori upper and lower error bound of the high-order discontinuous Galerkin method for the heat conduction equation},
url = {http://eudml.org/doc/261064},
volume = {59},
year = {2014},
}

TY - JOUR
AU - Šebestová, Ivana
TI - A posteriori upper and lower error bound of the high-order discontinuous Galerkin method for the heat conduction equation
JO - Applications of Mathematics
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 59
IS - 2
SP - 121
EP - 144
AB - We deal with the numerical solution of the nonstationary heat conduction equation with mixed Dirichlet/Neumann boundary conditions. The backward Euler method is employed for the time discretization and the interior penalty discontinuous Galerkin method for the space discretization. Assuming shape regularity, local quasi-uniformity, and transition conditions, we derive both a posteriori upper and lower error bounds. The analysis is based on the Helmholtz decomposition, the averaging interpolation operator, and on the use of cut-off functions. Numerical experiments are presented.
LA - eng
KW - discontinuous Galerkin method; Helmholtz decomposition; averaging interpolation operator; Euler backward scheme; residual-based a posteriori error estimate; local cut-off function; discontinuous Galerkin method; Helmholtz decomposition; averaging interpolation operator; Euler backward scheme; residual-based a posteriori error estimate; local cut-off function; nonstationary heat conduction equation; numerical experiments
UR - http://eudml.org/doc/261064
ER -

References

top
  1. Ainsworth, M., 10.1137/060665993, SIAM J. Numer. Anal. 45 (2007), 1777-1798. (2007) Zbl1151.65083MR2338409DOI10.1137/060665993
  2. Arnold, D. N., Brezzi, F., Cockburn, B., Marini, L. D., 10.1137/S0036142901384162, SIAM J. Numer. Anal. 39 (2002), 1749-1779. (2002) Zbl1008.65080MR1885715DOI10.1137/S0036142901384162
  3. Becker, R., Hansbo, P., Larson, M. G., 10.1016/S0045-7825(02)00593-5, Comput. Methods Appl. Mech. Eng. 192 (2003), 723-733. (2003) Zbl1042.65083MR1952357DOI10.1016/S0045-7825(02)00593-5
  4. Dari, E., Duran, R., Padra, C., Vampa, V., 10.1051/m2an/1996300403851, RAIRO, Modélisation Math. Anal. Numér. 30 (1996), 385-400. (1996) Zbl0853.65110MR1399496DOI10.1051/m2an/1996300403851
  5. Ern, A., Vohralík, M., 10.1137/090759008, SIAM J. Numer. Anal. 48 (2010), 198-223. (2010) Zbl1215.65152MR2608366DOI10.1137/090759008
  6. Feistauer, M., Dolejší, V., Kučera, V., Sobotíková, V., 10.1515/JNUM.2009.004, J. Numer. Math. 17 (2009), 45-65. (2009) Zbl1171.65064MR2541520DOI10.1515/JNUM.2009.004
  7. Girault, V., Raviart, P.-A., Finite Element Methods for Navier-Stokes Equations. Theory and algorithms. (Extended version of the 1979 publ.), Springer Series in Computational Mathematics 5 Springer, Berlin (1986). (1986) Zbl0585.65077MR0851383
  8. Karakashian, O. A., Pascal, F., 10.1137/S0036142902405217, SIAM J. Numer. Anal. 41 (2003), 2374-2399. (2003) Zbl1058.65120MR2034620DOI10.1137/S0036142902405217
  9. Karakashian, O. A., Pascal, F., Adaptive discontinuous Galerkin approximations of second-order elliptic problems, European Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS 2004 P. Neittaanmäki et al. University of Jyväskylä Jyväskylä (2004). (2004) 
  10. Karakashian, O. A., Pascal, F., 10.1137/05063979X, SIAM J. Numer. Anal. 45 (2007), 641-665. (2007) Zbl1140.65083MR2300291DOI10.1137/05063979X
  11. Nečas, J., Direct methods in the theory of elliptic equations, Academia Prague (1967); Masson et Cie, Paris, 1967, French. (1967) Zbl1225.35003
  12. Nicaise, S., Soualem, N., 10.1051/m2an:2005009, ESAIM, Math. Model. Numer. Anal. 39 (2005), 319-348. (2005) Zbl1078.65079MR2143951DOI10.1051/m2an:2005009
  13. Repin, S., Estimates of deviations from exact solutions of initial-boundary value problem for the heat equation, Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl. 13 (2002), 121-133. (2002) Zbl1221.65244MR1949485
  14. Šebestová, I., A posteriori error estimates of the discontinuous Galerkin method for convection-diffusion equations. Master Thesis, Charles University in Prague Prague (2009). (2009) 
  15. Šebestová, I., Dolejší, V., A posteriori error estimates of the discontinuous Galerkin method for the heat conduction equation, Acta Univ. Carol., Math. Phys. 53 (2012), 77-94. (2012) Zbl1280.65098MR3099403
  16. Verfürth, R., 10.1007/s10092-003-0073-2, Calcolo 40 (2003), 195-212. (2003) Zbl1168.65418MR2025602DOI10.1007/s10092-003-0073-2
  17. Verfürth, R., A review of a posteriori error estimation and adaptive mesh-refinement techniques, Wiley-Teubner Series Advances in Numerical Mathematics John Wiley & Sons, Chichester (1996). (1996) Zbl0853.65108

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.