Suppose a graph G = (V,E) with edge weights w(e) and edges partitioned into disjoint categories S₁,...,Sₚ is given. We consider optimization problems on G defined by a family of feasible sets (G) and the following objective function:
For an arbitrary number of categories we show that the L₅-perfect matching, L₅-a-b path, L₅-spanning tree problems and L₅-Hamilton cycle (on a Halin graph) problem are NP-complete.
We also summarize polynomiality results concerning above objective functions for arbitrary...
Suppose a graph whose edges are partitioned into disjoint categories (colors) is given. In the color-balanced spanning tree problem a spanning tree is looked for that minimizes the variability in the number of edges from different categories. We show that polynomiality of this problem depends on the number of categories and present some polynomial algorithm.
A matrix is said to have -simple image eigenspace if any eigenvector belonging to the interval containing a constant vector is the unique solution of the system in . The main result of this paper is an extension of -simplicity to interval max-min matrix distinguishing two possibilities, that at least one matrix or all matrices from a given interval have -simple image eigenspace. -simplicity of interval matrices in max-min algebra are studied and equivalent conditions for interval...
We consider inhomogeneous matrix products over max-plus algebra, where the matrices in the product satisfy certain assumptions under which the matrix products of sufficient length are rank-one, as it was shown in [6] (Shue, Anderson, Dey 1998). We establish a bound on the transient after which any product of matrices whose length exceeds that bound becomes rank-one.
Download Results (CSV)