Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

Balanced problems on graphs with categorization of edges

Štefan BerežnýVladimír Lacko — 2003

Discussiones Mathematicae Graph Theory

Suppose a graph G = (V,E) with edge weights w(e) and edges partitioned into disjoint categories S₁,...,Sₚ is given. We consider optimization problems on G defined by a family of feasible sets (G) and the following objective function: L ( D ) = m a x 1 i p ( m a x e S i D w ( e ) - m i n e S i D w ( e ) ) For an arbitrary number of categories we show that the L₅-perfect matching, L₅-a-b path, L₅-spanning tree problems and L₅-Hamilton cycle (on a Halin graph) problem are NP-complete. We also summarize polynomiality results concerning above objective functions for arbitrary...

The color-balanced spanning tree problem

Štefan BerežnýVladimír Lacko — 2005

Kybernetika

Suppose a graph G = ( V , E ) whose edges are partitioned into p disjoint categories (colors) is given. In the color-balanced spanning tree problem a spanning tree is looked for that minimizes the variability in the number of edges from different categories. We show that polynomiality of this problem depends on the number p of categories and present some polynomial algorithm.

-simplicity of interval max-min matrices

Ján PlavkaŠtefan Berežný — 2018

Kybernetika

A matrix A is said to have 𝐗 -simple image eigenspace if any eigenvector x belonging to the interval 𝐗 = { x : x ̲ x x ¯ } containing a constant vector is the unique solution of the system A y = x in 𝐗 . The main result of this paper is an extension of 𝐗 -simplicity to interval max-min matrix 𝐀 = { A : A ̲ A A ¯ } distinguishing two possibilities, that at least one matrix or all matrices from a given interval have 𝐗 -simple image eigenspace. 𝐗 -simplicity of interval matrices in max-min algebra are studied and equivalent conditions for interval...

A bound for the rank-one transient of inhomogeneous matrix products in special case

We consider inhomogeneous matrix products over max-plus algebra, where the matrices in the product satisfy certain assumptions under which the matrix products of sufficient length are rank-one, as it was shown in [6] (Shue, Anderson, Dey 1998). We establish a bound on the transient after which any product of matrices whose length exceeds that bound becomes rank-one.

Page 1

Download Results (CSV)