X-simplicity of interval max-min matrices
Kybernetika (2018)
- Volume: 54, Issue: 3, page 413-426
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topPlavka, Ján, and Berežný, Štefan. "X-simplicity of interval max-min matrices." Kybernetika 54.3 (2018): 413-426. <http://eudml.org/doc/294539>.
@article{Plavka2018,
abstract = {A matrix $A$ is said to have $X$-simple image eigenspace if any eigenvector $x$ belonging to the interval $\mbox\{$X$\}=\lbrace x\colon \underline\{x\}\le x\le \overline\{x\}\rbrace $ containing a constant vector is the unique solution of the system $A\otimes y=x$ in $X$. The main result of this paper is an extension of $X$-simplicity to interval max-min matrix $\mbox\{$A$\}=\lbrace A\colon \underline\{A\}\le A\le \overline\{A\}\rbrace $ distinguishing two possibilities, that at least one matrix or all matrices from a given interval have $X$-simple image eigenspace. $X$-simplicity of interval matrices in max-min algebra are studied and equivalent conditions for interval matrices which have $X$-simple image eigenspace are presented. The characterized property is related to and motivated by the general development of tropical linear algebra and interval analysis, as well as the notions of simple image set and weak robustness (or weak stability) that have been studied in max-min and max-plus algebras.},
author = {Plavka, Ján, Berežný, Štefan},
journal = {Kybernetika},
keywords = {max-min algebra; interval; eigenspace; simple image set},
language = {eng},
number = {3},
pages = {413-426},
publisher = {Institute of Information Theory and Automation AS CR},
title = {X-simplicity of interval max-min matrices},
url = {http://eudml.org/doc/294539},
volume = {54},
year = {2018},
}
TY - JOUR
AU - Plavka, Ján
AU - Berežný, Štefan
TI - X-simplicity of interval max-min matrices
JO - Kybernetika
PY - 2018
PB - Institute of Information Theory and Automation AS CR
VL - 54
IS - 3
SP - 413
EP - 426
AB - A matrix $A$ is said to have $X$-simple image eigenspace if any eigenvector $x$ belonging to the interval $\mbox{$X$}=\lbrace x\colon \underline{x}\le x\le \overline{x}\rbrace $ containing a constant vector is the unique solution of the system $A\otimes y=x$ in $X$. The main result of this paper is an extension of $X$-simplicity to interval max-min matrix $\mbox{$A$}=\lbrace A\colon \underline{A}\le A\le \overline{A}\rbrace $ distinguishing two possibilities, that at least one matrix or all matrices from a given interval have $X$-simple image eigenspace. $X$-simplicity of interval matrices in max-min algebra are studied and equivalent conditions for interval matrices which have $X$-simple image eigenspace are presented. The characterized property is related to and motivated by the general development of tropical linear algebra and interval analysis, as well as the notions of simple image set and weak robustness (or weak stability) that have been studied in max-min and max-plus algebras.
LA - eng
KW - max-min algebra; interval; eigenspace; simple image set
UR - http://eudml.org/doc/294539
ER -
References
top- Butkovič, P., 10.1016/s0166-218x(00)00212-2, Discrete Appl. Math. 105 (2000), 73-86. Zbl0976.15013MR1780462DOI10.1016/s0166-218x(00)00212-2
- Butkovič, P., 10.1007/978-1-84996-299-5, Springer, 2010. DOI10.1007/978-1-84996-299-5
- Butkovič, P., Schneider, H., Sergeev, S., 10.1007/978-1-84996-299-5, SIAM J. Control Optim. 50 (2012), 5, 3029-3051. MR3022097DOI10.1007/978-1-84996-299-5
- Cechlárová, K., 10.1016/0024-3795(92)90302-q, Tatra Mt. Math. Publ. 12 (1997), 73-79. Zbl0963.65041MR1607194DOI10.1016/0024-3795(92)90302-q
- Nola, A. Di, Gerla, B., 10.1090/conm/377/06988, In: Idempotent Mathematics and Mathematical Physics (G. L. Litvinov and V. P. Maslov, eds.), 2005, pp. 131-144. MR2149001DOI10.1090/conm/377/06988
- Nola, A. Di, Russo, C., 10.1016/j.ins.2006.09.002, Inform. Sci. 177 (2007), 1481-1498. Zbl1114.06009MR2307173DOI10.1016/j.ins.2006.09.002
- Gavalec, M., Zimmermann, K., Classification of solutions to systems of two-sided equations with interval coefficients., Int. J. Pure Applied Math. 45 (2008), 533-542. Zbl1154.65036MR2426231
- Gavalec, M., Periodicity in Extremal Algebra., Gaudeamus, Hradec Králové 2004.
- Gavalec, M., Plavka, J., Fast algorithm for extremal biparametric eigenproblem., Acta Electrotechnica et Informatica 7 (2007), 3, 1-5.
- Golan, J. S., 10.1007/978-94-015-9333-5_8, Springer, 1999. Zbl0947.16034MR1746739DOI10.1007/978-94-015-9333-5_8
- Gondran, M., Minoux, M., 10.1007/978-0-387-75450-5, Springer 2008. Zbl1201.16038MR2389137DOI10.1007/978-0-387-75450-5
- Heidergott, B., Olsder, G.-J., Woude, J. van der, 10.1515/9781400865239, Princeton University Press, 2005. MR2188299DOI10.1515/9781400865239
- Kolokoltsov, V. N., Maslov, V. P., 10.1007/978-94-015-8901-7, Kluwer, Dordrecht 1997. Zbl0941.93001MR1447629DOI10.1007/978-94-015-8901-7
- Kreinovich, V., Lakeyev, A., Rohn, J., Kahl, R., Computational Complexity and Feasibility of Data Processing and Interval Computations., Kluwer Academic Publishers, Dordrecht-Boston-London 1998. Zbl0945.68077MR1491092
- Litvinov, G. L., (eds.), V. P. Maslov, 10.1090/conm/377, AMS Contemporary Mathematics 377 (2005). Zbl1069.00011MR2148995DOI10.1090/conm/377
- Litvinov, G. L., (eds.), S. N. Sergeev, 10.1090/conm/495, AMS Contemporary Mathematics 495 (2009). Zbl1291.00065MR2560756DOI10.1090/conm/495
- Molnárová, M., Myšková, H., Plavka, J., 10.1016/j.laa.2012.12.020, Linear Algebra Appl. 438 (2013), 8, 3350-3364. MR3023281DOI10.1016/j.laa.2012.12.020
- Myšková, H., 10.2478/v10198-012-0033-3, Acta Electrotechnica et Informatica 12 (2012), 3, 57-61. DOI10.2478/v10198-012-0033-3
- Myšková, H., 10.2478/v10198-012-0032-4, Acta Electrotechnica et Informatica 12 (2012), 3, 51-56. DOI10.2478/v10198-012-0032-4
- Myšková, H., 10.2478/v10198-012-0048-9, Acta Electrotechnica et Informatica 12 (2012), 4, 56-60. DOI10.2478/v10198-012-0048-9
- Plavka, J., Szabó, P., 10.1016/j.dam.2010.11.020, Discrete Applied Math. 159 (2011), 5, 381-388. Zbl1225.15027MR2755915DOI10.1016/j.dam.2010.11.020
- Plavka, J., Szabó, P., The algorithm for the eigenproblem of an -triangular Toeplitz matrices in max-plus algebra., Acta Electrotechnica et Informatica 9 (2009), 4, 50-54.
- Plavka, J., On the weak robustness of fuzzy matrices., Kybernetika 49 (2013), 1, 128-140. Zbl1267.15026MR3097386
- Plavka, J., Sergeev, S., 10.14736/kyb-2016-4-0497, Kybernetika 52 (2016), 4, 497-513. MR3565766DOI10.14736/kyb-2016-4-0497
- Rohn, J., 10.1016/0024-3795(89)90004-9, Linear Algebra and Its Appl.126 (1989), 39-78. Zbl1061.15003MR1040771DOI10.1016/0024-3795(89)90004-9
- Sanchez, E., 10.1016/0165-0114(78)90033-7, Fuzzy Sets Systems 1 (1978), 69-74. Zbl0366.04001MR0494745DOI10.1016/0165-0114(78)90033-7
- Sergeev, S., 10.1016/j.laa.2011.02.038, Linear Algebra Appl. 435 (2011), 7, 1736-1757. Zbl1226.15017MR2810668DOI10.1016/j.laa.2011.02.038
- Tan, Yi-Jia, 10.1016/s0024-3795(98)10105-2, Linear Algebra Appl. 283 (1998), 257-272. Zbl0932.15005MR1657171DOI10.1016/s0024-3795(98)10105-2
- Tan, Yi-Jia, 10.1016/s0024-3795(03)00550-0, Lin. Algebra Appl. 374 (2003), 87-106. MR2008782DOI10.1016/s0024-3795(03)00550-0
- Zimmernann, K., Extremální algebra (in Czech)., Ekonomický ústav ČSAV Praha, 1976.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.