X-simplicity of interval max-min matrices

Ján Plavka; Štefan Berežný

Kybernetika (2018)

  • Volume: 54, Issue: 3, page 413-426
  • ISSN: 0023-5954

Abstract

top
A matrix A is said to have 𝐗 -simple image eigenspace if any eigenvector x belonging to the interval 𝐗 = { x : x ̲ x x ¯ } containing a constant vector is the unique solution of the system A y = x in 𝐗 . The main result of this paper is an extension of 𝐗 -simplicity to interval max-min matrix 𝐀 = { A : A ̲ A A ¯ } distinguishing two possibilities, that at least one matrix or all matrices from a given interval have 𝐗 -simple image eigenspace. 𝐗 -simplicity of interval matrices in max-min algebra are studied and equivalent conditions for interval matrices which have 𝐗 -simple image eigenspace are presented. The characterized property is related to and motivated by the general development of tropical linear algebra and interval analysis, as well as the notions of simple image set and weak robustness (or weak stability) that have been studied in max-min and max-plus algebras.

How to cite

top

Plavka, Ján, and Berežný, Štefan. "X-simplicity of interval max-min matrices." Kybernetika 54.3 (2018): 413-426. <http://eudml.org/doc/294539>.

@article{Plavka2018,
abstract = {A matrix $A$ is said to have $X$-simple image eigenspace if any eigenvector $x$ belonging to the interval $\mbox\{$X$\}=\lbrace x\colon \underline\{x\}\le x\le \overline\{x\}\rbrace $ containing a constant vector is the unique solution of the system $A\otimes y=x$ in $X$. The main result of this paper is an extension of $X$-simplicity to interval max-min matrix $\mbox\{$A$\}=\lbrace A\colon \underline\{A\}\le A\le \overline\{A\}\rbrace $ distinguishing two possibilities, that at least one matrix or all matrices from a given interval have $X$-simple image eigenspace. $X$-simplicity of interval matrices in max-min algebra are studied and equivalent conditions for interval matrices which have $X$-simple image eigenspace are presented. The characterized property is related to and motivated by the general development of tropical linear algebra and interval analysis, as well as the notions of simple image set and weak robustness (or weak stability) that have been studied in max-min and max-plus algebras.},
author = {Plavka, Ján, Berežný, Štefan},
journal = {Kybernetika},
keywords = {max-min algebra; interval; eigenspace; simple image set},
language = {eng},
number = {3},
pages = {413-426},
publisher = {Institute of Information Theory and Automation AS CR},
title = {X-simplicity of interval max-min matrices},
url = {http://eudml.org/doc/294539},
volume = {54},
year = {2018},
}

TY - JOUR
AU - Plavka, Ján
AU - Berežný, Štefan
TI - X-simplicity of interval max-min matrices
JO - Kybernetika
PY - 2018
PB - Institute of Information Theory and Automation AS CR
VL - 54
IS - 3
SP - 413
EP - 426
AB - A matrix $A$ is said to have $X$-simple image eigenspace if any eigenvector $x$ belonging to the interval $\mbox{$X$}=\lbrace x\colon \underline{x}\le x\le \overline{x}\rbrace $ containing a constant vector is the unique solution of the system $A\otimes y=x$ in $X$. The main result of this paper is an extension of $X$-simplicity to interval max-min matrix $\mbox{$A$}=\lbrace A\colon \underline{A}\le A\le \overline{A}\rbrace $ distinguishing two possibilities, that at least one matrix or all matrices from a given interval have $X$-simple image eigenspace. $X$-simplicity of interval matrices in max-min algebra are studied and equivalent conditions for interval matrices which have $X$-simple image eigenspace are presented. The characterized property is related to and motivated by the general development of tropical linear algebra and interval analysis, as well as the notions of simple image set and weak robustness (or weak stability) that have been studied in max-min and max-plus algebras.
LA - eng
KW - max-min algebra; interval; eigenspace; simple image set
UR - http://eudml.org/doc/294539
ER -

References

top
  1. Butkovič, P., 10.1016/s0166-218x(00)00212-2, Discrete Appl. Math. 105 (2000), 73-86. Zbl0976.15013MR1780462DOI10.1016/s0166-218x(00)00212-2
  2. Butkovič, P., 10.1007/978-1-84996-299-5, Springer, 2010. DOI10.1007/978-1-84996-299-5
  3. Butkovič, P., Schneider, H., Sergeev, S., 10.1007/978-1-84996-299-5, SIAM J. Control Optim. 50 (2012), 5, 3029-3051. MR3022097DOI10.1007/978-1-84996-299-5
  4. Cechlárová, K., 10.1016/0024-3795(92)90302-q, Tatra Mt. Math. Publ. 12 (1997), 73-79. Zbl0963.65041MR1607194DOI10.1016/0024-3795(92)90302-q
  5. Nola, A. Di, Gerla, B., 10.1090/conm/377/06988, In: Idempotent Mathematics and Mathematical Physics (G. L. Litvinov and V. P. Maslov, eds.), 2005, pp. 131-144. MR2149001DOI10.1090/conm/377/06988
  6. Nola, A. Di, Russo, C., 10.1016/j.ins.2006.09.002, Inform. Sci. 177 (2007), 1481-1498. Zbl1114.06009MR2307173DOI10.1016/j.ins.2006.09.002
  7. Gavalec, M., Zimmermann, K., Classification of solutions to systems of two-sided equations with interval coefficients., Int. J. Pure Applied Math. 45 (2008), 533-542. Zbl1154.65036MR2426231
  8. Gavalec, M., Periodicity in Extremal Algebra., Gaudeamus, Hradec Králové 2004. 
  9. Gavalec, M., Plavka, J., Fast algorithm for extremal biparametric eigenproblem., Acta Electrotechnica et Informatica 7 (2007), 3, 1-5. 
  10. Golan, J. S., 10.1007/978-94-015-9333-5_8, Springer, 1999. Zbl0947.16034MR1746739DOI10.1007/978-94-015-9333-5_8
  11. Gondran, M., Minoux, M., 10.1007/978-0-387-75450-5, Springer 2008. Zbl1201.16038MR2389137DOI10.1007/978-0-387-75450-5
  12. Heidergott, B., Olsder, G.-J., Woude, J. van der, 10.1515/9781400865239, Princeton University Press, 2005. MR2188299DOI10.1515/9781400865239
  13. Kolokoltsov, V. N., Maslov, V. P., 10.1007/978-94-015-8901-7, Kluwer, Dordrecht 1997. Zbl0941.93001MR1447629DOI10.1007/978-94-015-8901-7
  14. Kreinovich, V., Lakeyev, A., Rohn, J., Kahl, R., Computational Complexity and Feasibility of Data Processing and Interval Computations., Kluwer Academic Publishers, Dordrecht-Boston-London 1998. Zbl0945.68077MR1491092
  15. Litvinov, G. L., (eds.), V. P. Maslov, 10.1090/conm/377, AMS Contemporary Mathematics 377 (2005). Zbl1069.00011MR2148995DOI10.1090/conm/377
  16. Litvinov, G. L., (eds.), S. N. Sergeev, 10.1090/conm/495, AMS Contemporary Mathematics 495 (2009). Zbl1291.00065MR2560756DOI10.1090/conm/495
  17. Molnárová, M., Myšková, H., Plavka, J., 10.1016/j.laa.2012.12.020, Linear Algebra Appl. 438 (2013), 8, 3350-3364. MR3023281DOI10.1016/j.laa.2012.12.020
  18. Myšková, H., 10.2478/v10198-012-0033-3, Acta Electrotechnica et Informatica 12 (2012), 3, 57-61. DOI10.2478/v10198-012-0033-3
  19. Myšková, H., 10.2478/v10198-012-0032-4, Acta Electrotechnica et Informatica 12 (2012), 3, 51-56. DOI10.2478/v10198-012-0032-4
  20. Myšková, H., 10.2478/v10198-012-0048-9, Acta Electrotechnica et Informatica 12 (2012), 4, 56-60. DOI10.2478/v10198-012-0048-9
  21. Plavka, J., Szabó, P., 10.1016/j.dam.2010.11.020, Discrete Applied Math. 159 (2011), 5, 381-388. Zbl1225.15027MR2755915DOI10.1016/j.dam.2010.11.020
  22. Plavka, J., Szabó, P., The O ( n 2 ) algorithm for the eigenproblem of an ϵ -triangular Toeplitz matrices in max-plus algebra., Acta Electrotechnica et Informatica 9 (2009), 4, 50-54. 
  23. Plavka, J., On the weak robustness of fuzzy matrices., Kybernetika 49 (2013), 1, 128-140. Zbl1267.15026MR3097386
  24. Plavka, J., Sergeev, S., 10.14736/kyb-2016-4-0497, Kybernetika 52 (2016), 4, 497-513. MR3565766DOI10.14736/kyb-2016-4-0497
  25. Rohn, J., 10.1016/0024-3795(89)90004-9, Linear Algebra and Its Appl.126 (1989), 39-78. Zbl1061.15003MR1040771DOI10.1016/0024-3795(89)90004-9
  26. Sanchez, E., 10.1016/0165-0114(78)90033-7, Fuzzy Sets Systems 1 (1978), 69-74. Zbl0366.04001MR0494745DOI10.1016/0165-0114(78)90033-7
  27. Sergeev, S., 10.1016/j.laa.2011.02.038, Linear Algebra Appl. 435 (2011), 7, 1736-1757. Zbl1226.15017MR2810668DOI10.1016/j.laa.2011.02.038
  28. Tan, Yi-Jia, 10.1016/s0024-3795(98)10105-2, Linear Algebra Appl. 283 (1998), 257-272. Zbl0932.15005MR1657171DOI10.1016/s0024-3795(98)10105-2
  29. Tan, Yi-Jia, 10.1016/s0024-3795(03)00550-0, Lin. Algebra Appl. 374 (2003), 87-106. MR2008782DOI10.1016/s0024-3795(03)00550-0
  30. Zimmernann, K., Extremální algebra (in Czech)., Ekonomický ústav ČSAV Praha, 1976. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.