The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

La g -fonction de Littlewood-Paley associée à un opérateur différentiel singulier sur ( 0 , )

A. AchourK. Trimeche — 1983

Annales de l'institut Fourier

Dans son livre [H. Stein, Ann. of Math. Studies, 63, Princeton Univ. Press, (1970)] E. Stein associe à tout opérateur de Sturm-Liouville la g -fonction de Littlewood-Paley et conjecture que, pour tout p dans l’intervalle ] 1 , [ , il existe deux constantes C p et D p telles que : C p f p g ( f ) p D p f p . On démontre ces inégalités pour une classe d’opérateurs différentiels singuliers sur ] 0 , [ et on énonce alors un résultat sur les multiplicateurs concernant ces opérateurs.

Page 1

Download Results (CSV)