Anisotropic adaptive methods based on a metric related to the Hessian of the solution are
          considered. We propose a metric targeted to the minimization of interpolation error
          gradient for a nonconforming linear finite element approximation of a given piecewise
          regular function on a polyhedral domain  of
              
               ,  ≥ 2. We also
          present an algorithm generating a sequence of asymptotically quasi-optimal meshes relative
          to such a...
                    
                 
                
                    
                
            
        
            
            
            
            
            
                
            
                
            
                
            
                
            
                
            
                
                    
                
            
                
            
                
             
            
            
                
            
            
            
                
                    
                
            
            
            
            
                
            
            
             
            
                
            
            
            
                
                
                
                    
                       
We consider a general loaded arch problem with a small thickness. To approximate the solution of this problem, a conforming mixed finite element method which takes into account an approximation of the middle line of the arch is given. But for a very small thickness such a method gives poor error bounds. the conforming Galerkin method is then enriched with residual-free bubble functions.
                    
                 
                
                    
                
            
        
            
            
            
            
            
                
            
                
            
                
            
                
            
                
            
                
                    
                
            
                
            
                
             
            
            
                
            
            
            
                
                    
                
            
            
            
            
                
            
            
             
            
                
            
            
            
                
                
                
                    
                       
We consider a general loaded arch problem with a small thickness. To
approximate the solution of this problem, a conforming mixed finite element
method which takes into account an approximation of the middle line of the
arch is given. But for a very small thickness such a method gives poor error
bounds. the conforming Galerkin method is then enriched with residual-free
bubble functions.
                    
                 
                
                    
                
            
        
            
            
            
            
            
                
            
                
            
                
            
                
            
                
            
                
                    
                
            
                
            
                
             
            
            
                
            
            
            
                
                    
                
            
            
            
            
                
            
            
             
            
                
            
            
            
                
                
                
                    
                       
In this paper, a new a posteriori error estimator for nonconforming convection diffusion
          approximation problem, which relies on the small discrete problems solution in stars, has
          been established. It is equivalent to the energy error up to data oscillation without any
          saturation assumption nor comparison with residual estimator
                    
                 
                
                    
                
            
        
            
            
            
            
            
                
            
                
            
                
            
                
            
                
            
                
                    
                
            
                
            
                
             
            
            
                
            
            
            
                
                    
                
            
            
            
            
                
            
            
             
            
                
            
            
            
                
                
                
                    
                       
We present a new method for generating a -dimensional simplicial mesh
          that minimizes the 
               -norm,
             > 0, of the interpolation error or its gradient. The method
          uses edge-based error estimates to build a tensor metric. We describe and analyze the
          basic steps of our method
                    
                 
                
                    
                
            
        
            
            
            
            
            
                
            
                
            
                
            
                
            
                
                    
                
            
                
            
                
             
            
            
                
            
            
            
                
                    
                
            
            
            
            
                
            
            
             
            
                
            
            
            
                
                
                
                
                    
                
            
        
        
        
            
                Download Results (CSV)