Edge-based a Posteriori Error Estimators for Generating Quasi-optimal Simplicial Meshes

A. Agouzal; K. Lipnikov; Yu. Vassilevsk

Mathematical Modelling of Natural Phenomena (2010)

  • Volume: 5, Issue: 7, page 91-96
  • ISSN: 0973-5348

Abstract

top
We present a new method for generating a d-dimensional simplicial mesh that minimizes the Lp-norm, p > 0, of the interpolation error or its gradient. The method uses edge-based error estimates to build a tensor metric. We describe and analyze the basic steps of our method

How to cite

top

Agouzal, A., Lipnikov, K., and Vassilevsk, Yu.. Taik, A., ed. "Edge-based a Posteriori Error Estimators for Generating Quasi-optimal Simplicial Meshes." Mathematical Modelling of Natural Phenomena 5.7 (2010): 91-96. <http://eudml.org/doc/197673>.

@article{Agouzal2010,
abstract = {We present a new method for generating a d-dimensional simplicial mesh that minimizes the Lp-norm, p > 0, of the interpolation error or its gradient. The method uses edge-based error estimates to build a tensor metric. We describe and analyze the basic steps of our method},
author = {Agouzal, A., Lipnikov, K., Vassilevsk, Yu.},
editor = {Taik, A.},
journal = {Mathematical Modelling of Natural Phenomena},
keywords = {finite elements; anisotropic meshes; a posteriori error estimates},
language = {eng},
month = {8},
number = {7},
pages = {91-96},
publisher = {EDP Sciences},
title = {Edge-based a Posteriori Error Estimators for Generating Quasi-optimal Simplicial Meshes},
url = {http://eudml.org/doc/197673},
volume = {5},
year = {2010},
}

TY - JOUR
AU - Agouzal, A.
AU - Lipnikov, K.
AU - Vassilevsk, Yu.
AU - Taik, A.
TI - Edge-based a Posteriori Error Estimators for Generating Quasi-optimal Simplicial Meshes
JO - Mathematical Modelling of Natural Phenomena
DA - 2010/8//
PB - EDP Sciences
VL - 5
IS - 7
SP - 91
EP - 96
AB - We present a new method for generating a d-dimensional simplicial mesh that minimizes the Lp-norm, p > 0, of the interpolation error or its gradient. The method uses edge-based error estimates to build a tensor metric. We describe and analyze the basic steps of our method
LA - eng
KW - finite elements; anisotropic meshes; a posteriori error estimates
UR - http://eudml.org/doc/197673
ER -

References

top
  1. A. Agouzal, K. Lipnikov, Y. Vassilevski. Generation of quasi-optimal meshes based on a posteriori error estimates. In: Proceedings of 16th International Meshing Roundtable. M.Brewer and D.Marcum (eds.), Springer, (2007), 139–148.  
  2. A. Agouzal, K. Lipnikov, Y. Vassilevski. Hessian-free metric-based mesh adaptation via geometry of interpolation error. To appear in Comp. Math. Math. Phys., 50 (2010).  
  3. Y. Vassilevski, K. Lipnikov. Adaptive algorithm for generation of quasi-optimal meshes. Comp. Math. Math. Phys., 39 (1999), 1532–1551. 
  4. Y. Vassilevski, A. Agouzal. An unified asymptotic analysis of interpolation errors for optimal meshes. Doklady Mathematics, 72 (2005), 879–882. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.