The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

Sur la nature des fonctions à carré sommable et des ensembles mesurables

A. Besikovitch — 1923

Fundamenta Mathematicae

Théorème: Quelle que soit une fonction f(x) à carré sommable qu'on suppose définie aux points de l'intervalle (0,1) et nulle ailleurs, l'intégrale q(x) = ∫_0^1 (f(x+α)-f(x-α))/α dα considérée comme lim_{ϵ=0}∫_{ϵ}^1, est finie presque partout dans (0,1) et représente une fonction de x à carré sommable. Le but de cette note est de trouver une limite supérieure pour l'intégrale ∫_0^1[q(x)]^2dx, et de donner une démonstration du théoreme cité, en se servant d'une méthode des variables réelles qui permet...

Page 1

Download Results (CSV)