Isomorphism of some anisotropic Besov and sequence spaces
An isomorphism between some anisotropic Besov and sequence spaces is established, and the continuity of a Stieltjes-type integral operator, acting on some of these spaces, is proved.
An isomorphism between some anisotropic Besov and sequence spaces is established, and the continuity of a Stieltjes-type integral operator, acting on some of these spaces, is proved.
The asymptotic behaviour of ε-entropy of classes of Lipschitz functions in is obtained. Moreover, the asymptotics of ε-entropy of classes of Lipschitz functions in whose tail function decreases as is obtained. In case p = 1 the relation between the ε-entropy of a given class of probability densities on and the minimax risk for that class is discussed.
To each set of knots for i = 0,...,2ν and for i = 2ν + 1,..., n + ν, with 1 ≤ ν ≤ n, there corresponds the space of all piecewise linear and continuous functions on I = [0,1] with knots and the orthogonal projection of L²(I) onto . The main result is . This shows that the Lebesgue constant for the Franklin orthogonal system is 2 + (2-√3)².
We study nonlinear m-term approximation in a Banach space with regard to a basis. It is known that in the case of a greedy basis (like the Haar basis in , 1 < p < ∞) a greedy type algorithm realizes nearly best m-term approximation for any individual function. In this paper we generalize this result in two directions. First, instead of a greedy algorithm we consider a weak greedy algorithm. Second, we study in detail unconditional nongreedy bases (like the multivariate Haar basis in ,...
Page 1