Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

ε-Entropy and moduli of smoothness in L p -spaces

A. Kamont — 1992

Studia Mathematica

The asymptotic behaviour of ε-entropy of classes of Lipschitz functions in L p ( d ) is obtained. Moreover, the asymptotics of ε-entropy of classes of Lipschitz functions in L p ( d ) whose tail function decreases as O ( λ - γ ) is obtained. In case p = 1 the relation between the ε-entropy of a given class of probability densities on d and the minimax risk for that class is discussed.

The Lebesgue constants for the Franklin orthogonal system

Z. CiesielskiA. Kamont — 2004

Studia Mathematica

To each set of knots t i = i / 2 n for i = 0,...,2ν and t i = ( i - ν ) / n for i = 2ν + 1,..., n + ν, with 1 ≤ ν ≤ n, there corresponds the space ν , n of all piecewise linear and continuous functions on I = [0,1] with knots t i and the orthogonal projection P ν , n of L²(I) onto ν , n . The main result is l i m ( n - ν ) ν | | P ν , n | | = s u p ν , n : 1 ν n | | P ν , n | | = 2 + ( 2 - 3 ) ² . This shows that the Lebesgue constant for the Franklin orthogonal system is 2 + (2-√3)².

Greedy approximation and the multivariate Haar system

A. KamontV. N. Temlyakov — 2004

Studia Mathematica

We study nonlinear m-term approximation in a Banach space with regard to a basis. It is known that in the case of a greedy basis (like the Haar basis in L p ( [ 0 , 1 ] ) , 1 < p < ∞) a greedy type algorithm realizes nearly best m-term approximation for any individual function. In this paper we generalize this result in two directions. First, instead of a greedy algorithm we consider a weak greedy algorithm. Second, we study in detail unconditional nongreedy bases (like the multivariate Haar basis d = × . . . × in L p ( [ 0 , 1 ] d ) ,...

Page 1

Download Results (CSV)