Doble suspensión de bolas de homología.
We extend a theorem of S. Claytor in order to characterize the Peano generalized continua which are embeddable into the 2-sphere. We also give a characterization of the Peano generalized continua which admit closed embeddings in the Euclidean plane.
The purpose of this note is to prove the exponential law for uniformly continuous proper maps.
We show that the proper homotopy type of any properly c-connected locally finite n-dimensional CW-complex is represented by a closed polyhedron in (Theorem I). The case n - c ≥ 3 is a special case of a general proper homotopy embedding theorem (Theorem II). For n - c ≤ 2 we need some basic properties of “proper” algebraic topology which are summarized in Appendices A and B. The results of this paper are the proper analogues of classical results by Stallings [17] and Wall [20] for finite CW-complexes;...
Page 1