Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

On the generalized Massey–Rolfsen invariant for link maps

A. Skopenkov — 2000

Fundamenta Mathematicae

For K = K 1 . . . K s and a link map f : K m let K = i < j K i × K j , define a map f : K S m - 1 by f ( x , y ) = ( f x - f y ) / | f x - f y | and a (generalized) Massey-Rolfsen invariant α ( f ) π m - 1 ( K ) to be the homotopy class of f . We prove that for a polyhedron K of dimension ≤ m - 2 under certain (weakened metastable) dimension restrictions, α is an onto or a 1 - 1 map from the set of link maps f : K m up to link concordance to π m - 1 ( K ) . If K 1 , . . . , K s are closed highly homologically connected manifolds of dimension p 1 , . . . , p s (in particular, homology spheres), then π m - 1 ( K ) i < j π p i + p j - m + 1 S .

A new invariant and parametric connected sum of embeddings

A. Skopenkov — 2007

Fundamenta Mathematicae

We define an isotopy invariant of embeddings N m of manifolds into Euclidean space. This invariant together with the α-invariant of Haefliger-Wu is complete in the dimension range where the α-invariant could be incomplete. We also define parametric connected sum of certain embeddings (analogous to surgery). This allows us to obtain new completeness results for the α-invariant and the following estimation of isotopy classes of embeddings. In the piecewise-linear category, for a (3n-2m+2)-connected...

Page 1

Download Results (CSV)