The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

On the generalized Massey–Rolfsen invariant for link maps

A. Skopenkov — 2000

Fundamenta Mathematicae

For K = K 1 . . . K s and a link map f : K m let K = i < j K i × K j , define a map f : K S m - 1 by f ( x , y ) = ( f x - f y ) / | f x - f y | and a (generalized) Massey-Rolfsen invariant α ( f ) π m - 1 ( K ) to be the homotopy class of f . We prove that for a polyhedron K of dimension ≤ m - 2 under certain (weakened metastable) dimension restrictions, α is an onto or a 1 - 1 map from the set of link maps f : K m up to link concordance to π m - 1 ( K ) . If K 1 , . . . , K s are closed highly homologically connected manifolds of dimension p 1 , . . . , p s (in particular, homology spheres), then π m - 1 ( K ) i < j π p i + p j - m + 1 S .

A new invariant and parametric connected sum of embeddings

A. Skopenkov — 2007

Fundamenta Mathematicae

We define an isotopy invariant of embeddings N m of manifolds into Euclidean space. This invariant together with the α-invariant of Haefliger-Wu is complete in the dimension range where the α-invariant could be incomplete. We also define parametric connected sum of certain embeddings (analogous to surgery). This allows us to obtain new completeness results for the α-invariant and the following estimation of isotopy classes of embeddings. In the piecewise-linear category, for a (3n-2m+2)-connected...

Page 1

Download Results (CSV)