Currently displaying 1 – 6 of 6

Showing per page

Order by Relevance | Title | Year of publication

On differentiation of integrals with respect to bases of convex sets.

A. Stokolos — 1996

Studia Mathematica

Differentiation of integrals of functions from the class L i p ( 1 , 1 ) ( I 2 ) with respect to the basis of convex sets is established. An estimate of the rate of differentiation is given. It is also shown that there exist functions in L i p ( 1 , 1 ) ( I N ) , N ≥ 3, and H 1 ω ( I 2 ) with ω(δ)/δ → ∞ as δ → +0 whose integrals are not differentiated with respect to the bases of convex sets in the corresponding dimension.

On weak type inequalities for rare maximal functions

K. HareA. Stokolos — 2000

Colloquium Mathematicae

The properties of rare maximal functions (i.e. Hardy-Littlewood maximal functions associated with sparse families of intervals) are investigated. A simple criterion allows one to decide if a given rare maximal function satisfies a converse weak type inequality. The summability properties of rare maximal functions are also considered.

On weak type inequalities for rare maximal functions in ℝⁿ

A. M. Stokolos — 2006

Colloquium Mathematicae

The study of one-dimensional rare maximal functions was started in [4,5]. The main result in [5] was obtained with the help of some general procedure. The goal of the present article is to adapt the procedure (we call it "dyadic crystallization") to the multidimensional setting and to demonstrate that rare maximal functions have properties not better than the Strong Maximal Function.

Page 1

Download Results (CSV)