On the characterization of certain additive maps in prime -rings
Let be a noncommutative prime ring equipped with an involution ‘’, and let be the maximal symmetric ring of quotients of . Consider the additive maps and . We prove the following under some inevitable torsion restrictions. (a) If and are fixed positive integers such that for all and for all , then . (b) If for all , then . Furthermore, we characterize Jordan left -centralizers in semiprime rings admitting an anti-automorphism . As applications, we find the structure of...