On the characterization of certain additive maps in prime * -rings

Mohammad Ashraf; Mohammad Aslam Siddeeque; Abbas Hussain Shikeh

Czechoslovak Mathematical Journal (2024)

  • Volume: 74, Issue: 2, page 549-565
  • ISSN: 0011-4642

Abstract

top
Let 𝒜 be a noncommutative prime ring equipped with an involution ‘ * ’, and let 𝒬 m s ( 𝒜 ) be the maximal symmetric ring of quotients of 𝒜 . Consider the additive maps and 𝒯 : 𝒜 𝒬 m s ( 𝒜 ) . We prove the following under some inevitable torsion restrictions. (a) If m and n are fixed positive integers such that ( m + n ) 𝒯 ( a 2 ) = m 𝒯 ( a ) a * + n a 𝒯 ( a ) for all a 𝒜 and ( m + n ) ( a 2 ) = m ( a ) a * + n a 𝒯 ( a ) for all a 𝒜 , then = 0 . (b) If 𝒯 ( a b a ) = a 𝒯 ( b ) a * for all a , b 𝒜 , then 𝒯 = 0 . Furthermore, we characterize Jordan left τ -centralizers in semiprime rings admitting an anti-automorphism τ . As applications, we find the structure of generalized Jordan * -derivations in prime rings and generalize as well as improve all the results of A. Abbasi, C. Abdioglu, S. Ali, M. R. Mozumder (2022).

How to cite

top

Ashraf, Mohammad, Siddeeque, Mohammad Aslam, and Shikeh, Abbas Hussain. "On the characterization of certain additive maps in prime $\ast $-rings." Czechoslovak Mathematical Journal 74.2 (2024): 549-565. <http://eudml.org/doc/299562>.

@article{Ashraf2024,
abstract = {Let $\mathcal \{A\}$ be a noncommutative prime ring equipped with an involution ‘$*$’, and let $\mathcal \{Q\}_\{ms\}(\mathcal \{A\})$ be the maximal symmetric ring of quotients of $\mathcal \{A\}$. Consider the additive maps $\mathcal \{H\}$ and $\mathcal \{T\} \colon \mathcal \{A\}\rightarrow \mathcal \{Q\}_\{ms\}(\mathcal \{A\})$. We prove the following under some inevitable torsion restrictions. (a) If $m$ and $n$ are fixed positive integers such that $(m+n)\mathcal \{T\}(a^2)=m\mathcal \{T\}(a)a^*+na\mathcal \{T\}(a)$ for all $a\in \mathcal \{A\}$ and $(m+n)\mathcal \{H\}(a^2)=m\mathcal \{H\}(a)a^*+na\mathcal \{T\}(a)$ for all $a\in \mathcal \{A\}$, then $\mathcal \{H\}=0$. (b) If $\mathcal \{T\}(aba)=a\mathcal \{T\}(b)a^*$ for all $a, b\in \mathcal \{A\}$, then $\mathcal \{T\}=0$. Furthermore, we characterize Jordan left $\tau $-centralizers in semiprime rings admitting an anti-automorphism $\tau $. As applications, we find the structure of generalized Jordan $*$-derivations in prime rings and generalize as well as improve all the results of A. Abbasi, C. Abdioglu, S. Ali, M. R. Mozumder (2022).},
author = {Ashraf, Mohammad, Siddeeque, Mohammad Aslam, Shikeh, Abbas Hussain},
journal = {Czechoslovak Mathematical Journal},
keywords = {prime ring; involution; generalized $(m, n)$-Jordan $*$-centralizer},
language = {eng},
number = {2},
pages = {549-565},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the characterization of certain additive maps in prime $\ast $-rings},
url = {http://eudml.org/doc/299562},
volume = {74},
year = {2024},
}

TY - JOUR
AU - Ashraf, Mohammad
AU - Siddeeque, Mohammad Aslam
AU - Shikeh, Abbas Hussain
TI - On the characterization of certain additive maps in prime $\ast $-rings
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 74
IS - 2
SP - 549
EP - 565
AB - Let $\mathcal {A}$ be a noncommutative prime ring equipped with an involution ‘$*$’, and let $\mathcal {Q}_{ms}(\mathcal {A})$ be the maximal symmetric ring of quotients of $\mathcal {A}$. Consider the additive maps $\mathcal {H}$ and $\mathcal {T} \colon \mathcal {A}\rightarrow \mathcal {Q}_{ms}(\mathcal {A})$. We prove the following under some inevitable torsion restrictions. (a) If $m$ and $n$ are fixed positive integers such that $(m+n)\mathcal {T}(a^2)=m\mathcal {T}(a)a^*+na\mathcal {T}(a)$ for all $a\in \mathcal {A}$ and $(m+n)\mathcal {H}(a^2)=m\mathcal {H}(a)a^*+na\mathcal {T}(a)$ for all $a\in \mathcal {A}$, then $\mathcal {H}=0$. (b) If $\mathcal {T}(aba)=a\mathcal {T}(b)a^*$ for all $a, b\in \mathcal {A}$, then $\mathcal {T}=0$. Furthermore, we characterize Jordan left $\tau $-centralizers in semiprime rings admitting an anti-automorphism $\tau $. As applications, we find the structure of generalized Jordan $*$-derivations in prime rings and generalize as well as improve all the results of A. Abbasi, C. Abdioglu, S. Ali, M. R. Mozumder (2022).
LA - eng
KW - prime ring; involution; generalized $(m, n)$-Jordan $*$-centralizer
UR - http://eudml.org/doc/299562
ER -

References

top
  1. Abbasi, A., Abdioglu, C., Ali, S., Mozumder, M. R., 10.1007/s41980-021-00665-w, Bull. Iran. Math. Soc. 48 (2022), 2765-2778. (2022) Zbl1517.16034MR4487734DOI10.1007/s41980-021-00665-w
  2. Beidar, K. I., III, W. S. Martindale, 10.1006/jabr.1997.7285, J. Algebra 203 (1998), 491-532. (1998) Zbl0904.16012MR1622795DOI10.1006/jabr.1997.7285
  3. Beidar, K. I., III, W. S. Martindale, Mikhalev, A. V., Rings with Generalized Identities, Pure and Applied Mathematics 196. Marcel Dekker, New York (1996). (1996) Zbl0847.16001MR1368853
  4. Bennis, D., Dhara, B., Fahid, B., 10.1007/s41980-020-00377-7, Bull. Iran. Math. Soc. 47 (2021), 217-224. (2021) Zbl1467.16021MR4215874DOI10.1007/s41980-020-00377-7
  5. Brešar, M., 10.1007/s10468-016-9625-4, Algebr. Represent. Theory 19 (2016), 1437-1450. (2016) Zbl1361.16014MR3574001DOI10.1007/s10468-016-9625-4
  6. Brešar, M., Chebotar, M. A., III, W. S. Martindale, 10.1007/978-3-7643-7796-0, Frontiers in Mathematics. Birkhäuser, Basel (2007). (2007) Zbl1132.16001MR2332350DOI10.1007/978-3-7643-7796-0
  7. Fošner, A., 10.1515/dema-2013-0456, Demonstr. Math. 46 (2013), 254-262. (2013) Zbl1293.16033MR3089114DOI10.1515/dema-2013-0456
  8. Herstein, I. N., 10.1090/S0002-9939-1957-0095864-2, Proc. Am. Math. Soc. 8 (1957), 1104-1110. (1957) Zbl0216.07202MR0095864DOI10.1090/S0002-9939-1957-0095864-2
  9. Herstein, I. N., Topics in Ring Theory, University of Chicago Press, Chicago (1969). (1969) Zbl0232.16001MR0271135
  10. Kosi-Ulbl, I., Vukman, J., 10.5486/PMD.2016.7490, Publ. Math. Debr. 89 (2016), 223-231. (2016) Zbl1389.16079MR3529272DOI10.5486/PMD.2016.7490
  11. Lanning, S., 10.1006/jabr.1996.0003, J. Algebra 179 (1996), 47-91. (1996) Zbl0839.16020MR1367841DOI10.1006/jabr.1996.0003
  12. Lee, T.-K., Lin, J.-H., 10.1016/j.laa.2014.08.006, Linear Algebra Appl. 462 (2014), 1-15. (2014) Zbl1300.16044MR3255518DOI10.1016/j.laa.2014.08.006
  13. Lee, T.-K., Lin, J.-H., 10.1080/00927872.2014.974103, Commun. Algebra 43 (2015), 5195-5204. (2015) Zbl1327.16033MR3395699DOI10.1080/00927872.2014.974103
  14. Lee, T.-K., Wong, T.-L., 10.1080/00927872.2012.761711, Commun. Algebra 42 (2014), 2923-2927. (2014) Zbl1293.16034MR3178052DOI10.1080/00927872.2012.761711
  15. Lee, T.-K., Wong, T.-L., Zhou, Y., 10.1080/03081087.2013.869593, Linear Multilinear Algebra 63 (2015), 411-422. (2015) Zbl1312.16046MR3273764DOI10.1080/03081087.2013.869593
  16. Lee, T.-K., Zhou, Y., 10.1142/S0219498813501260, J. Algebra Appl. 13 (2014), Article ID 1350126, 9 pages. (2014) Zbl1292.16037MR3153861DOI10.1142/S0219498813501260
  17. Lin, J.-H., 10.11650/tjm/191105, Taiwanese J. Math. 24 (2020), 1091-1105. (2020) Zbl1467.16043MR4152657DOI10.11650/tjm/191105
  18. Qi, X., Zhang, Y., 10.1080/00927872.2017.1335744, Commun. Algebra 46 (2018), 1001-1010. (2018) Zbl1441.16047MR3780213DOI10.1080/00927872.2017.1335744
  19. Rowen, L., 10.1090/S0002-9904-1973-13162-3, Bull. Am. Math. Soc. 79 (1973), 219-223. (1973) Zbl0252.16007MR0309996DOI10.1090/S0002-9904-1973-13162-3
  20. Šemrl, P., 10.4064/sm-97-3-157-165, Stud. Math. 97 (1991), 157-165. (1991) Zbl0761.46047MR1100685DOI10.4064/sm-97-3-157-165
  21. Šemrl, P., 10.1090/S0002-9939-1994-1186136-6, Proc. Am. Math. Soc. 120 (1994), 515-518. (1994) Zbl0816.47040MR1186136DOI10.1090/S0002-9939-1994-1186136-6
  22. Siddeeque, M. A., Khan, N., Abdullah, A. A., 10.1142/S0219498823501050, J. Algebra Appl. 22 (2023), Article ID 2350105, 34 pages. (2023) Zbl07667259MR4556321DOI10.1142/S0219498823501050
  23. Siddeeque, M. A., Shikeh, A. H., 10.1515/gmj-2023-2060, Georgian Math. J. 31 (2024), 139-148. (2024) Zbl07803155MR4698476DOI10.1515/gmj-2023-2060
  24. Siddeeque, M. A., Shikeh, A. H., 10.1007/s13366-023-00694-y, (to appear) in Beitr. Algebra Geom. MR4740676DOI10.1007/s13366-023-00694-y
  25. Vukman, J., An identity related to centralizers in semiprime rings, Commentat. Math. Univ. Carol. 40 (1999), 447-456. (1999) Zbl1014.16021MR1732490
  26. Vukman, J., Centralizers on semiprime rings, Commentat. Math. Univ. Carol. 42 (2001), 237-245. (2001) Zbl1057.16029MR1832143
  27. Vukman, J., 10.3336/gm.45.1.04, Glas. Math., III. Ser. 45 (2010), 43-53. (2010) Zbl1200.16051MR2646436DOI10.3336/gm.45.1.04
  28. Vukman, J., Fošner, M., 10.11650/twjm/1500404876, Taiwanese J. Math. 11 (2007), 1431-1441. (2007) Zbl1148.16033MR2368661DOI10.11650/twjm/1500404876
  29. Vukman, J., Kosi-Ulbl, I., 10.1007/s00010-003-2681-y, Aequationes Math. 66 (2003), 277-283. (2003) Zbl1073.16018MR2028564DOI10.1007/s00010-003-2681-y
  30. Zalar, B., On centralizers of semiprime rings, Commentat. Math. Univ. Carol. 32 (1991), 609-614. (1991) Zbl0746.16011MR1159807

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.