On the characterization of certain additive maps in prime -rings
Mohammad Ashraf; Mohammad Aslam Siddeeque; Abbas Hussain Shikeh
Czechoslovak Mathematical Journal (2024)
- Volume: 74, Issue: 2, page 549-565
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topAshraf, Mohammad, Siddeeque, Mohammad Aslam, and Shikeh, Abbas Hussain. "On the characterization of certain additive maps in prime $\ast $-rings." Czechoslovak Mathematical Journal 74.2 (2024): 549-565. <http://eudml.org/doc/299562>.
@article{Ashraf2024,
abstract = {Let $\mathcal \{A\}$ be a noncommutative prime ring equipped with an involution ‘$*$’, and let $\mathcal \{Q\}_\{ms\}(\mathcal \{A\})$ be the maximal symmetric ring of quotients of $\mathcal \{A\}$. Consider the additive maps $\mathcal \{H\}$ and $\mathcal \{T\} \colon \mathcal \{A\}\rightarrow \mathcal \{Q\}_\{ms\}(\mathcal \{A\})$. We prove the following under some inevitable torsion restrictions. (a) If $m$ and $n$ are fixed positive integers such that $(m+n)\mathcal \{T\}(a^2)=m\mathcal \{T\}(a)a^*+na\mathcal \{T\}(a)$ for all $a\in \mathcal \{A\}$ and $(m+n)\mathcal \{H\}(a^2)=m\mathcal \{H\}(a)a^*+na\mathcal \{T\}(a)$ for all $a\in \mathcal \{A\}$, then $\mathcal \{H\}=0$. (b) If $\mathcal \{T\}(aba)=a\mathcal \{T\}(b)a^*$ for all $a, b\in \mathcal \{A\}$, then $\mathcal \{T\}=0$. Furthermore, we characterize Jordan left $\tau $-centralizers in semiprime rings admitting an anti-automorphism $\tau $. As applications, we find the structure of generalized Jordan $*$-derivations in prime rings and generalize as well as improve all the results of A. Abbasi, C. Abdioglu, S. Ali, M. R. Mozumder (2022).},
author = {Ashraf, Mohammad, Siddeeque, Mohammad Aslam, Shikeh, Abbas Hussain},
journal = {Czechoslovak Mathematical Journal},
keywords = {prime ring; involution; generalized $(m, n)$-Jordan $*$-centralizer},
language = {eng},
number = {2},
pages = {549-565},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the characterization of certain additive maps in prime $\ast $-rings},
url = {http://eudml.org/doc/299562},
volume = {74},
year = {2024},
}
TY - JOUR
AU - Ashraf, Mohammad
AU - Siddeeque, Mohammad Aslam
AU - Shikeh, Abbas Hussain
TI - On the characterization of certain additive maps in prime $\ast $-rings
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 74
IS - 2
SP - 549
EP - 565
AB - Let $\mathcal {A}$ be a noncommutative prime ring equipped with an involution ‘$*$’, and let $\mathcal {Q}_{ms}(\mathcal {A})$ be the maximal symmetric ring of quotients of $\mathcal {A}$. Consider the additive maps $\mathcal {H}$ and $\mathcal {T} \colon \mathcal {A}\rightarrow \mathcal {Q}_{ms}(\mathcal {A})$. We prove the following under some inevitable torsion restrictions. (a) If $m$ and $n$ are fixed positive integers such that $(m+n)\mathcal {T}(a^2)=m\mathcal {T}(a)a^*+na\mathcal {T}(a)$ for all $a\in \mathcal {A}$ and $(m+n)\mathcal {H}(a^2)=m\mathcal {H}(a)a^*+na\mathcal {T}(a)$ for all $a\in \mathcal {A}$, then $\mathcal {H}=0$. (b) If $\mathcal {T}(aba)=a\mathcal {T}(b)a^*$ for all $a, b\in \mathcal {A}$, then $\mathcal {T}=0$. Furthermore, we characterize Jordan left $\tau $-centralizers in semiprime rings admitting an anti-automorphism $\tau $. As applications, we find the structure of generalized Jordan $*$-derivations in prime rings and generalize as well as improve all the results of A. Abbasi, C. Abdioglu, S. Ali, M. R. Mozumder (2022).
LA - eng
KW - prime ring; involution; generalized $(m, n)$-Jordan $*$-centralizer
UR - http://eudml.org/doc/299562
ER -
References
top- Abbasi, A., Abdioglu, C., Ali, S., Mozumder, M. R., 10.1007/s41980-021-00665-w, Bull. Iran. Math. Soc. 48 (2022), 2765-2778. (2022) Zbl1517.16034MR4487734DOI10.1007/s41980-021-00665-w
- Beidar, K. I., III, W. S. Martindale, 10.1006/jabr.1997.7285, J. Algebra 203 (1998), 491-532. (1998) Zbl0904.16012MR1622795DOI10.1006/jabr.1997.7285
- Beidar, K. I., III, W. S. Martindale, Mikhalev, A. V., Rings with Generalized Identities, Pure and Applied Mathematics 196. Marcel Dekker, New York (1996). (1996) Zbl0847.16001MR1368853
- Bennis, D., Dhara, B., Fahid, B., 10.1007/s41980-020-00377-7, Bull. Iran. Math. Soc. 47 (2021), 217-224. (2021) Zbl1467.16021MR4215874DOI10.1007/s41980-020-00377-7
- Brešar, M., 10.1007/s10468-016-9625-4, Algebr. Represent. Theory 19 (2016), 1437-1450. (2016) Zbl1361.16014MR3574001DOI10.1007/s10468-016-9625-4
- Brešar, M., Chebotar, M. A., III, W. S. Martindale, 10.1007/978-3-7643-7796-0, Frontiers in Mathematics. Birkhäuser, Basel (2007). (2007) Zbl1132.16001MR2332350DOI10.1007/978-3-7643-7796-0
- Fošner, A., 10.1515/dema-2013-0456, Demonstr. Math. 46 (2013), 254-262. (2013) Zbl1293.16033MR3089114DOI10.1515/dema-2013-0456
- Herstein, I. N., 10.1090/S0002-9939-1957-0095864-2, Proc. Am. Math. Soc. 8 (1957), 1104-1110. (1957) Zbl0216.07202MR0095864DOI10.1090/S0002-9939-1957-0095864-2
- Herstein, I. N., Topics in Ring Theory, University of Chicago Press, Chicago (1969). (1969) Zbl0232.16001MR0271135
- Kosi-Ulbl, I., Vukman, J., 10.5486/PMD.2016.7490, Publ. Math. Debr. 89 (2016), 223-231. (2016) Zbl1389.16079MR3529272DOI10.5486/PMD.2016.7490
- Lanning, S., 10.1006/jabr.1996.0003, J. Algebra 179 (1996), 47-91. (1996) Zbl0839.16020MR1367841DOI10.1006/jabr.1996.0003
- Lee, T.-K., Lin, J.-H., 10.1016/j.laa.2014.08.006, Linear Algebra Appl. 462 (2014), 1-15. (2014) Zbl1300.16044MR3255518DOI10.1016/j.laa.2014.08.006
- Lee, T.-K., Lin, J.-H., 10.1080/00927872.2014.974103, Commun. Algebra 43 (2015), 5195-5204. (2015) Zbl1327.16033MR3395699DOI10.1080/00927872.2014.974103
- Lee, T.-K., Wong, T.-L., 10.1080/00927872.2012.761711, Commun. Algebra 42 (2014), 2923-2927. (2014) Zbl1293.16034MR3178052DOI10.1080/00927872.2012.761711
- Lee, T.-K., Wong, T.-L., Zhou, Y., 10.1080/03081087.2013.869593, Linear Multilinear Algebra 63 (2015), 411-422. (2015) Zbl1312.16046MR3273764DOI10.1080/03081087.2013.869593
- Lee, T.-K., Zhou, Y., 10.1142/S0219498813501260, J. Algebra Appl. 13 (2014), Article ID 1350126, 9 pages. (2014) Zbl1292.16037MR3153861DOI10.1142/S0219498813501260
- Lin, J.-H., 10.11650/tjm/191105, Taiwanese J. Math. 24 (2020), 1091-1105. (2020) Zbl1467.16043MR4152657DOI10.11650/tjm/191105
- Qi, X., Zhang, Y., 10.1080/00927872.2017.1335744, Commun. Algebra 46 (2018), 1001-1010. (2018) Zbl1441.16047MR3780213DOI10.1080/00927872.2017.1335744
- Rowen, L., 10.1090/S0002-9904-1973-13162-3, Bull. Am. Math. Soc. 79 (1973), 219-223. (1973) Zbl0252.16007MR0309996DOI10.1090/S0002-9904-1973-13162-3
- Šemrl, P., 10.4064/sm-97-3-157-165, Stud. Math. 97 (1991), 157-165. (1991) Zbl0761.46047MR1100685DOI10.4064/sm-97-3-157-165
- Šemrl, P., 10.1090/S0002-9939-1994-1186136-6, Proc. Am. Math. Soc. 120 (1994), 515-518. (1994) Zbl0816.47040MR1186136DOI10.1090/S0002-9939-1994-1186136-6
- Siddeeque, M. A., Khan, N., Abdullah, A. A., 10.1142/S0219498823501050, J. Algebra Appl. 22 (2023), Article ID 2350105, 34 pages. (2023) Zbl07667259MR4556321DOI10.1142/S0219498823501050
- Siddeeque, M. A., Shikeh, A. H., 10.1515/gmj-2023-2060, Georgian Math. J. 31 (2024), 139-148. (2024) Zbl07803155MR4698476DOI10.1515/gmj-2023-2060
- Siddeeque, M. A., Shikeh, A. H., 10.1007/s13366-023-00694-y, (to appear) in Beitr. Algebra Geom. MR4740676DOI10.1007/s13366-023-00694-y
- Vukman, J., An identity related to centralizers in semiprime rings, Commentat. Math. Univ. Carol. 40 (1999), 447-456. (1999) Zbl1014.16021MR1732490
- Vukman, J., Centralizers on semiprime rings, Commentat. Math. Univ. Carol. 42 (2001), 237-245. (2001) Zbl1057.16029MR1832143
- Vukman, J., 10.3336/gm.45.1.04, Glas. Math., III. Ser. 45 (2010), 43-53. (2010) Zbl1200.16051MR2646436DOI10.3336/gm.45.1.04
- Vukman, J., Fošner, M., 10.11650/twjm/1500404876, Taiwanese J. Math. 11 (2007), 1431-1441. (2007) Zbl1148.16033MR2368661DOI10.11650/twjm/1500404876
- Vukman, J., Kosi-Ulbl, I., 10.1007/s00010-003-2681-y, Aequationes Math. 66 (2003), 277-283. (2003) Zbl1073.16018MR2028564DOI10.1007/s00010-003-2681-y
- Zalar, B., On centralizers of semiprime rings, Commentat. Math. Univ. Carol. 32 (1991), 609-614. (1991) Zbl0746.16011MR1159807
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.