Fix-finite approximation property in normed vector spaces.
Under suitable conditions we prove the existence of fixed points of fuzzy monotone multifunctions.
We prove the existence of a fixed point of non-expanding fuzzy multifunctions in -fuzzy preordered sets. Furthermore, we establish the existence of least and minimal fixed points of non-expanding fuzzy multifunctions in -fuzzy ordered sets.
A fuzzy version of Tarski’s fixpoint Theorem for fuzzy monotone maps on nonempty fuzzy compete lattice is given.
It is shown that under natural assumptions, there exists a linear functional does not have supremum on a closed bounded subset. That is the James Theorem for non-convex bodies. Also, a non-linear version of the Bishop-Phelps Theorem and a geometrical version of the formula of the subdifferential of the sum of two functions are obtained.
Page 1