We prove that for any λ ∈ ℝ, there is an increasing sequence of eigenvalues μₙ(λ) for the nonlinear boundary value problem
⎧ in Ω,
⎨
⎩ on crtial ∂Ω
and we show that the first one μ₁(λ) is simple and isolated; we also prove some results about variations of the density ϱ and the continuity with respect to the parameter λ.
In this paper, we study the spectrum for the following eigenvalue problem with the p-biharmonic operator involving the Hardy term:
in Ω, .
By using the variational technique and the Hardy-Rellich inequality, we prove that the above problem has at least one increasing sequence of positive eigenvalues.
We study the existence of solutions for a p-biharmonic problem with a critical Sobolev exponent and Navier boundary conditions, using variational arguments. We establish the existence of a precise interval of parameters for which our problem admits a nontrivial solution.
The existence of at least one non-decreasing sequence of positive eigenvalues for the problem driven by both -Harmonic and -biharmonic operators
is proved by applying a local minimization and the theory of the generalized Lebesgue-Sobolev spaces and .
Download Results (CSV)