The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 12 of 12

Showing per page

Order by Relevance | Title | Year of publication

On the principal eigencurve of the p-Laplacian related to the Sobolev trace embedding

Abdelouahed El KhalilMohammed Ouanan — 2005

Applicationes Mathematicae

We prove that for any λ ∈ ℝ, there is an increasing sequence of eigenvalues μₙ(λ) for the nonlinear boundary value problem ⎧ Δ u = | u | p - 2 u in Ω, ⎨ ⎩ | u | p - 2 u / ν = λ ϱ ( x ) | u | p - 2 u + μ | u | p - 2 u on crtial ∂Ω and we show that the first one μ₁(λ) is simple and isolated; we also prove some results about variations of the density ϱ and the continuity with respect to the parameter λ.

On the spectrum of the p-biharmonic operator involving p-Hardy's inequality

Abdelouahed El KhalilMy Driss Morchid AlaouiAbdelfattah Touzani — 2014

Applicationes Mathematicae

In this paper, we study the spectrum for the following eigenvalue problem with the p-biharmonic operator involving the Hardy term: Δ ( | Δ u | p - 2 Δ u ) = λ ( | u | p - 2 u ) / ( δ ( x ) 2 p ) in Ω, u W 2 , p ( Ω ) . By using the variational technique and the Hardy-Rellich inequality, we prove that the above problem has at least one increasing sequence of positive eigenvalues.

A Weighted Eigenvalue Problems Driven by both p ( · ) -Harmonic and p ( · ) -Biharmonic Operators

Mohamed LaghzalAbdelouahed El KhalilAbdelfattah Touzani — 2021

Communications in Mathematics

The existence of at least one non-decreasing sequence of positive eigenvalues for the problem driven by both p ( · ) -Harmonic and p ( · ) -biharmonic operators Δ p ( x ) 2 u - Δ p ( x ) u = λ w ( x ) | u | q ( x ) - 2 u in Ω , u W 2 , p ( · ) ( Ω ) W 0 1 , p ( · ) ( Ω ) , is proved by applying a local minimization and the theory of the generalized Lebesgue-Sobolev spaces L p ( · ) ( Ω ) and W m , p ( · ) ( Ω ) .

Page 1

Download Results (CSV)