The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
In this paper, we introduce and study the class of almost weak Dunford-Pettis operators. As consequences, we derive the following interesting results: the domination property of this class of operators and characterizations of the wDP property. Next, we characterize pairs of Banach lattices for which each positive almost weak Dunford-Pettis operator is almost Dunford-Pettis.
The present paper is devoted to some applications of the notion of L-Dunford-Pettis sets to several classes of operators on Banach lattices. More precisely, we establish some characterizations of weak Dunford-Pettis, Dunford-Pettis completely continuous, and weak almost Dunford-Pettis operators. Next, we study the relationships between L-Dunford-Pettis, and Dunford-Pettis (relatively compact) sets in topological dual Banach spaces.
We introduce and study the disjoint weak -convergent operators in Banach lattices, and we give a characterization of it in terms of sequences in the positive cones. As an application, we derive the domination and the duality properties of the class of positive disjoint weak -convergent operators. Next, we examine the relationship between disjoint weak -convergent operators and disjoint -convergent operators. Finally, we characterize order bounded disjoint weak -convergent operators in terms...
In this paper, we give some necessary and sufficient conditions such that each positive operator between two Banach lattices is weak almost Dunford-Pettis, and we derive some interesting results about the weak Dunford-Pettis property in Banach lattices.
Download Results (CSV)