Feynman diagrams in algebraic combinatorics.
Let denote generic binary forms, and let denote their -th transvectant in the sense of classical invariant theory. In this paper we classify all the quadratic syzygies between the . As a consequence, we show that each of the higher transvectants is redundant in the sense that it can be completely recovered from and . This result can be geometrically interpreted in terms of the incomplete Segre imbedding. The calculations rely upon the Cauchy exact sequence of -representations, and the...
Page 1