A note on convergence of semigroups
Convergence of semigroups which do not converge in the Trotter-Kato-Neveu sense is considered.
Convergence of semigroups which do not converge in the Trotter-Kato-Neveu sense is considered.
The Sova-Kurtz approximation theorem for semigroups is applied to prove convergence of solutions of the telegraph equation with small parameter. Convergence of the solutions of the diffusion equation with varying boundary conditions is also considered.
The Yosida approximation is treated as an inversion formula for the Laplace transform.
The subject of the paper is reciprocal influence of pure mathematics and applied sciences. We illustrate the idea by giving a review of mathematical results obtained recently, related to the model of stochastic gene expression due to Lipniacki et al. [38]. In this model, featuring mRNA and protein levels, and gene activity, the stochastic part of processes involved in gene expression is distinguished from the part that seems to be mostly deterministic, and the dynamics is expressed by means of a...
We show that if the set of all bounded strongly continuous cosine families on a Banach space X is treated as a metric space under the metric of the uniform convergence associated with the operator norm on the space 𝓛(X) of all bounded linear operators on X, then the isolated points of this set are precisely the scalar cosine families. By definition, a scalar cosine family is a cosine family whose members are all scalar multiples of the identity operator. We also show that if the sets of all bounded...
Let be a locally compact Hausdorff space. Let , i = 0,1,...,N, be generators of Feller semigroups in C₀() with related Feller processes and let , i = 0,...,N, be non-negative continuous functions on with . Assume that the closure A of defined on generates a Feller semigroup T(t), t ≥ 0 in C₀(). A natural interpretation of a related Feller process X = X(t), t ≥ 0 is that it evolves according to the following heuristic rules: conditional on being at a point p ∈ , with probability , the process...
We study existence, uniqueness and form of solutions to the equation where α, β, γ and f are given, and stands for the even part of a searched-for differentiable function g. This equation emerged naturally as a result of the analysis of the distribution of a certain random process modelling a population genetics phenomenon.
Page 1