A note on convergence of semigroups
Annales Polonici Mathematici (1998)
- Volume: 69, Issue: 2, page 107-127
- ISSN: 0066-2216
Access Full Article
topAbstract
topHow to cite
topAdam Bobrowski. "A note on convergence of semigroups." Annales Polonici Mathematici 69.2 (1998): 107-127. <http://eudml.org/doc/270524>.
@article{AdamBobrowski1998,
abstract = {Convergence of semigroups which do not converge in the Trotter-Kato-Neveu sense is considered.},
author = {Adam Bobrowski},
journal = {Annales Polonici Mathematici},
keywords = {semigroup; approximation; differentiable semigroup; resolvent; asymptotic behaviour; mean ergodic theorems; convergence of semigroups; holomorphic semigroup; Trotter-Kato-Neveu theorem; -semigroups; almost uniform convergence},
language = {eng},
number = {2},
pages = {107-127},
title = {A note on convergence of semigroups},
url = {http://eudml.org/doc/270524},
volume = {69},
year = {1998},
}
TY - JOUR
AU - Adam Bobrowski
TI - A note on convergence of semigroups
JO - Annales Polonici Mathematici
PY - 1998
VL - 69
IS - 2
SP - 107
EP - 127
AB - Convergence of semigroups which do not converge in the Trotter-Kato-Neveu sense is considered.
LA - eng
KW - semigroup; approximation; differentiable semigroup; resolvent; asymptotic behaviour; mean ergodic theorems; convergence of semigroups; holomorphic semigroup; Trotter-Kato-Neveu theorem; -semigroups; almost uniform convergence
UR - http://eudml.org/doc/270524
ER -
References
top- [1] N. H. Abdelazis, A note on convergence of linear semigroups of class (1.A), Hokkaido Math. J. 18 (1989), 513-521.
- [2] N. H. Abdelazis, On approximation by discrete semigroups, J. Approx. Theory 73 (1993), 253-269.
- [3] N. H. Abdelazis and P. R. Chernoff, Continuous and discrete semigroup approximations with applications to the Cauchy problems, J. Operator Theory 32 (1994), 331-352.
- [4] W. Arendt, Vector-valued Laplace transforms and Cauchy problem, Israel J. Math. 59 (1987), 321-352.
- [5] W. Arendt and C. J. K. Batty, Tauberian theorems and stability of one-parameter semigroups, Trans. Amer. Math. Soc. 306 (1988), 837-852. Zbl0652.47022
- [6] C. J. K. Batty, Some Tauberian theorems related to operator theory, in: Banach Center Publ. 30, Inst. Math., Polish Acad. Sci., 1994, 21-34. Zbl0810.40005
- [7] C. J. K. Batty, Asymptotic behaviour of semigroups, in: Banach Center Publ. 30, Inst. Math., Polish Acad. Sci., 1994, 35-52. Zbl0818.47034
- [8] B. Bäumer and F. Neubrander, Laplace transform methods for evolution equations, Confer. Sem. Mat. Univ. Bari 1994, 27-60.
- [9] A. Bobrowski, Degenerate convergence of semigroups, Semigroup Forum 49 (1994), 303-327. Zbl0817.47047
- [10] A. Bobrowski, Examples of a pointwise convergence of semigroups, Ann. Univ. Mariae Curie-Skłodowska Sect. A 49 (1995), 15-33.
- [11] A. Bobrowski, Integrated semigroups and the Trotter-Kato theorem, Bull. Polish Acad. Sci. Math. 41 (1994), 297-304. Zbl0824.47031
- [12] A. Bobrowski, On the generation of non-continuous semigroups, Semigroup Forum 54 (1997), 237-252. Zbl0873.47025
- [13] A. Bobrowski, On the Yosida approximation and the Widder-Arendt representation theorem, Studia Math. 124 (1997), 281-290. Zbl0876.44001
- [14] A. Bobrowski, On approximation of (1.A) semigroups by discrete semigroups, Bull. Polish Acad. Sci. Math. 46 (1998), 141-154. Zbl0916.47030
- [15] S. Busenberg and B. Wu, Convergence theorems for integrated semigroups, Differential Integral Equations 5 (1992), 509-520. Zbl0786.47036
- [16] J. T. Cannon, Convergence criteria for a sequence of semi-groups, Appl. Anal. 5 (1975), 23-31. Zbl0366.47017
- [17] P. J. Cohen, Factorization in group algebras, Duke Math. J. 26 (1959), 199-205. Zbl0085.10201
- [18] P. C. Curtis and A. Figà-Talamanca, Factorization theorems for Banach algebras, in: Function Algebras, F. T. Birtel (ed.), Scott and Foresman, Chicago, 1966.
- [19] G. Da Prato and E. Sinestrari, Differential operators with non-dense domain, Ann. Scuola Norm. Sup. Pisa 14 (1987), 285-344. Zbl0652.34069
- [20] E. B. Davies, One-Parameter Semigroups, Academic Press, London, 1980. Zbl0457.47030
- [21] B. D. Doytchinov, W. J. Hrusa and S. J. Watson, On perturbation of differentiable semigroups, Semigroup Forum 54 (1997), 100-111. Zbl0867.47034
- [22] N. Dunford, Spectral theory, I. Convergence to projections, Trans. Amer. Math. Soc. 54 (1943), 185-217. Zbl0063.01185
- [23] S. N. Ethier and T. G. Kurtz, Markov Processes. Characterization and Convergence, Wiley Ser. Probab. Math. Statist., Wiley, New York, 1986.
- [24] A. Favini, J. A. Goldstein and S. Romanelli, Analytic semigroups on and on generated by classes of second order differential operators, preprint, 1997. Zbl0939.47036
- [25] J. A. Goldstein, Semigroups of Linear Operators and Applications, Oxford Math. Monographs, 1985.
- [26] J. A. Goldstein, C. Radin and R. E. Showalter, Convergence rates of ergodic limits for semigroups and cosine operator functions, Semigroup Forum 16 (1978), 89-95. Zbl0393.47004
- [27] E. Görlich and D. Pontzen, Approximation of operator semigroups of Oharu’s class , Tôhoku Math. J. (2) 34 (1982), 539-552. Zbl0498.47016
- [28] S. L. Gulik, T. S. Liu and A. C. M. van Rooij, Group algebra modules II, Canad. J. Math. 19 (1967), 151-173.
- [29] B. Hennig and F. Neubrander, On representations, inversions and approximations of Laplace transform in Banach spaces, Appl. Anal. 49 (1993), 151-170. Zbl0791.44002
- [30] E. Hewitt, The ranges of certain convolution operators, Math. Scand. 15 (1964) 147-155. Zbl0135.36002
- [31] E. Hille, On the differentiability of semigroups of operators, Acta Sci. Math. (Szeged) 12 (1950), 19-24. Zbl0035.35802
- [32] E. Hille and R. S. Phillips, Functional Analysis and Semi-Groups, rev. ed., Amer. Math. Soc. Collloq. Publ. 31, Providence, R.I., 1957. Zbl0078.10004
- [33] K. Ito and H. P. Mc Kean, Jr., Diffusion Processes and Their Sample Paths, Springer, Berlin, 1965.
- [34] T. Kato, Perturbation Theory for Linear Operators, Springer, New York, 1966.
- [35] J. Kisyński, A proof of the Trotter-Kato theorem on approximation of semigroups, Colloq. Math. 18 (1967), 181-184. Zbl0152.33905
- [36] J. Kisyński, Semigroups of operators and some of their applications to partial differential equations, in: Control Theory and Topics in Functional Analysis, Vol. 3, IAEA, Vienna, 1978, 305-405.
- [37] T. G. Kurtz, Extensions of Trotter's operator semigroup approximation theorems, J. Funct. Anal. 3 (1969), 354-375. Zbl0174.18401
- [38] T. G. Kurtz, A general theorem on the convergence of operator semigroups, Trans. Amer. Math. Soc. 148 (1970), 23-32. Zbl0194.44103
- [39] A. Lasota and R. Rudnicki, Asymptotic behaviour of semigroups of positive operators on C(X), Bull. Polish Acad. Sci. Math. 36 (1988), 151-159. Zbl0676.47021
- [40] C. Lizama, On the convergence and approximation of integrated semigroups, J. Math. Anal. Appl. 181, (1994), 89-103. Zbl0815.47053
- [41] G. Lumer, Solutions généralisées et semi-groupes intégrés, C. R. Acad. Sci. Paris Sér. I 310 (1990), 557-582.
- [42] G. Lumer, A (very) direct approach to locally Lipschitz continuous integrated semigroups and some related new results oriented towards applications, via generalized solutions, in: LSU Seminar Notes in Functional Analysis and PDEs, 1990-1991, Louisiana State Univ., Baton Rouge, 1991, 88-107.
- [43] G. Lumer, Evolution equations: Solutions for irregular evolution problems via generalized solutions and generalized initial values. Applications to periodic shocks models, Ann. Univ. Sarav. Ser. Math. 5 (1994), no. 1, 1-102. Zbl0813.34057
- [44] Yu. I. Lyubich and V u Quôc Phóng, Asymptotic stability of linear differential equations on Banach spaces, Studia Math. 88 (1988), 37-42. Zbl0639.34050
- [45] R. Nagel, One-Parameter Semigroups of Positive Operators, Lecture Notes in Math. 1184, Springer, Berlin, 1986. Zbl0585.47030
- [46] J. Neveu, Théorie des semi-groupes de Markov, Univ. Calif. Publ. Statist. 2 (1958), 319-394. Zbl0173.45703
- [47] A. Pazy, On the differentiability and compactness of semigroups of linear operators, J. Math. Mech. 17 (1960), 1131-1141. Zbl0162.45903
- [48] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Appl. Math. Sci. 44, Springer, New York, 1983.
- [49] R. S. Phillips, An inversion formula for the Laplace transform and semigroups of linear operators, Ann. of Math. 59 (1954), 325-356. Zbl0059.10704
- [50] M. Renardy, On the stability of differentiability of semigroups, Semigroup Forum 51 (1995), 343-346. Zbl0831.47030
- [51] G. M. Sklyar and V. Ya. Shirman, On the asymptotic stability of a linear differential equation in a Banach space, Teor. Funktsiĭ Funktsional. Anal. i Prilozhen. 37 (1982), 127-132 (in Russian). Zbl0521.34063
- [52] M. Slemrod, Asymptotic behaviour of C₀ semi-groups as determined by the spectrum of the generator, Indiana Univ. Math. J. 25 (1976), 783-792. Zbl0313.47026
- [53] T. Takahashi and S. Oharu, Approximation of operator semigroups in a Banach space, Tôhoku Math. J. 24 (1972), 505-528. Zbl0281.47024
- [54] K. Yosida, On the differentiability of semigroups of linear operators, Proc. Japan Acad. 34 (1958), 337-340. Zbl0083.11003
- [55] K. Yosida, Functional Analysis, Springer, Berlin, 1968.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.