The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We investigate some properties of the normed space of almost periodic functions which are defined via the Denjoy-Perron (or equivalently, Henstock-Kurzweil) integral. In particular, we prove that this space is barrelled while it is not complete. We also prove that a linear differential equation with the non-homogenous term being an almost periodic function of such type, possesses a solution in the class under consideration.
Download Results (CSV)