The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
A ring has right SIP (SSP) if the intersection (sum) of two direct summands of is also a direct summand. We show that the right SIP (SSP) is the Morita invariant property. We also prove that the trivial extension of by has SIP if and only if has SIP and for every idempotent in . Moreover, we give necessary and sufficient conditions for the generalized upper triangular matrix rings to have SIP.
In this article, we study modules with the weak -extending property. We prove that if satisfies weak -extending, pseudo duo, properties and has finite uniform dimension then decomposes into a direct sum of a semisimple submodule and a submodule of finite uniform dimension. In particular, if satisfies the weak -extending, pseudo duo, properties and ascending (or descending) chain condition on essential submodules then for some semisimple submodule and Noetherian (or Artinian, respectively)...
Download Results (CSV)