A Note on Direct and Semi-direct Products of Groups.
We study direct decompositions of extensions of rigid completely decomposable groups by finite primary groups. These decompositions are unique and can be found by finite procedures. By passing to certain quotients the determination of the direct decompositions is made more efficient.
The class of almost completely decomposable groups with a critical typeset of type (1,4) and a homocyclic regulator quotient of exponent p³ is shown to be of bounded representation type. There are precisely four near-isomorphism classes of indecomposables, all of rank 6.
Almost completely decomposable groups with a critical typeset of type and a -primary regulator quotient are studied. It is shown that there are, depending on the exponent of the regulator quotient , either no indecomposables if ; only six near isomorphism types of indecomposables if ; and indecomposables of arbitrary large rank if .
Page 1