The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We consider the following Darboux problem for the functional differential equation
a.e. in [0,a]×[0,b],
u(x,y) = ψ(x,y) on [-a₀,a]×[-b₀,b]where the function is defined by for (s,t) ∈ [-a₀,0]×[-b₀,0]. We prove a theorem on existence of the Carathéodory solutions of the above problem.
We consider the Darboux problem for a functional differential equation:
a.e. in [0,a]×[0,b],
u(x,y) = ψ(x,y) on [-a₀,a]×[-b₀,b]∖(0,a]×(0,b],
where the function is defined by for (s,t) ∈ [-a₀,0]×[-b₀,0]. We give a few theorems about weak and strong inequalities for this problem. We also discuss the case where the right-hand side of the differential equation is linear.
We deal with monotone iterative method for the Darboux problem for the system of hyperbolic partial functional-differential equations
where the function is defined by for .
We consider the Cauchy problem for a nonlocal wave equation in one dimension. We study the existence of solutions by means of bicharacteristics. The existence and uniqueness is obtained in topology. The existence theorem is proved in a subset generated by certain continuity conditions for the derivatives.
We consider a second order semilinear functional evolution equation with infinite delay in a Banach space. We prove the existence of mild solutions for this equation using the measure of noncompactness technique and the Schauder fixed point theorem.
Download Results (CSV)