Operazioni di Steenrod e teoria degli invarianti modulari per i primi dispari
A celebrated result by S. Priddy states the Koszulness of any locally finite homogeneous PBW-algebra, i.e. a homogeneous graded algebra having a Poincaré-Birkhoff-Witt basis. We find sufficient conditions for a non-locally finite homogeneous PBW-algebra to be Koszul, which allows us to completely determine the cohomology of the universal Steenrod algebra at any prime.
A signed graph is a graph whose edges are labeled by signs. If has vertices, its spectral radius is the number , where are the eigenvalues of the signed adjacency matrix . Here we determine the signed graphs achieving the minimal or the maximal spectral radius in the classes and of unbalanced unicyclic graphs and unbalanced bicyclic graphs, respectively.
Page 1