Stability of reaction fronts in thin domains.
Anisotropic adaptive methods based on a metric related to the Hessian of the solution are considered. We propose a metric targeted to the minimization of interpolation error gradient for a nonconforming linear finite element approximation of a given piecewise regular function on a polyhedral domain of , ≥ 2. We also present an algorithm generating a sequence of asymptotically quasi-optimal meshes relative to such a...
We consider a general loaded arch problem with a small thickness. To approximate the solution of this problem, a conforming mixed finite element method which takes into account an approximation of the middle line of the arch is given. But for a very small thickness such a method gives poor error bounds. the conforming Galerkin method is then enriched with residual-free bubble functions.
We consider a general loaded arch problem with a small thickness. To approximate the solution of this problem, a conforming mixed finite element method which takes into account an approximation of the middle line of the arch is given. But for a very small thickness such a method gives poor error bounds. the conforming Galerkin method is then enriched with residual-free bubble functions.
We present a new method for generating a -dimensional simplicial mesh that minimizes the -norm, > 0, of the interpolation error or its gradient. The method uses edge-based error estimates to build a tensor metric. We describe and analyze the basic steps of our method
In this paper, a new a posteriori error estimator for nonconforming convection diffusion approximation problem, which relies on the small discrete problems solution in stars, has been established. It is equivalent to the energy error up to data oscillation without any saturation assumption nor comparison with residual estimator
Page 1