Truncated spectral regularization for an ill-posed non-linear parabolic problem
It is known that the nonlinear nonhomogeneous backward Cauchy problem , with , where is a densely defined positive self-adjoint unbounded operator on a Hilbert space, is ill-posed in the sense that small perturbations in the final value can lead to large deviations in the solution. We show, under suitable conditions on and , that a solution of the above problem satisfies an integral equation involving the spectral representation of , which is also ill-posed. Spectral truncation is used...