A uniform version of Jarník's theorem
Given an additively written abelian group G and a set X ⊆ G, we let (X) denote the monoid of zero-sum sequences over X and (X) the Davenport constant of (X), namely the supremum of the positive integers n for which there exists a sequence x₁⋯xₙ in (X) such that for each non-empty proper subset I of 1,...,n. In this paper, we mainly investigate the case when G is a power of ℤ and X is a box (i.e., a product of intervals of G). Some mixed sets (e.g., the product of a group by a box) are studied...
Nous améliorons les meilleures bornes supérieures et inférieures connues pour la fonction d’Erdös et Graham définie par , où le premier maximum est pris sur toutes les bases (exactes) d’ordre au plus , où désigne le sous-ensemble de composé des éléments tels que soit encore une base et où, enfin, désigne l’ordre (exact) de . Notre étude nous conduira, entre autres, à prouver un nouveau résultat additif général découlant de la méthode isopérimétrique et à étudier trois problèmes additifs...
Page 1