Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

Non-Archimedean K-spaces

Albert Kubzdela — 2005

Banach Center Publications

We study Banach spaces over a non-spherically complete non-Archimedean valued field K. We prove that a non-Archimedean Banach space over K which contains a linearly homeomorphic copy of l (hence l itself) is not a K-space. We discuss the three-space problem for a few properties of non-Archimedean Banach spaces.

A non-archimedean Dugundji extension theorem

Jerzy KąkolAlbert KubzdelaWiesƚaw Śliwa — 2013

Czechoslovak Mathematical Journal

We prove a non-archimedean Dugundji extension theorem for the spaces C * ( X , 𝕂 ) of continuous bounded functions on an ultranormal space X with values in a non-archimedean non-trivially valued complete field 𝕂 . Assuming that 𝕂 is discretely valued and Y is a closed subspace of X we show that there exists an isometric linear extender T : C * ( Y , 𝕂 ) C * ( X , 𝕂 ) if X is collectionwise normal or Y is Lindelöf or 𝕂 is separable. We provide also a self contained proof of the known fact that any metrizable compact subspace Y of an ultraregular...

Page 1

Download Results (CSV)