The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 8 of 8

Showing per page

Order by Relevance | Title | Year of publication

The Magic Square and symmetric Compositions.

Alberto Elduque — 2004

Revista Matemática Iberoamericana

The new construction given by Barton and Sudbery of the Freudenthal-Tits magic square, which includes the exceptional classical simple Lie algebras, will be interpreted and extended by using a pair of symmetric composition algebras, instead of the standard unital composition algebras.

On maximal subalgebras of central simple Malcev algebras.

Alberto C. Elduque Palomo — 1986

Extracta Mathematicae

In this paper the structure of the maximal elements of the lattice of subalgebras of central simple non-Lie Malcev algebras is considered. Such maximal subalgebras are studied in two ways: first by using theoretical results concerning Malcev algebras, and second by using the close connection between these simple non-Lie Malcev algebras and the Cayley-Dickson algebras, which have been extensively studied (see [4]).

A 4 3 -grading on a 56 -dimensional simple structurable algebra and related fine gradings on the simple Lie algebras of type E

Diego Aranda-OrnaAlberto ElduqueMikhail Kochetov — 2014

Commentationes Mathematicae Universitatis Carolinae

We describe two constructions of a certain 4 3 -grading on the so-called Brown algebra (a simple structurable algebra of dimension 56 and skew-dimension 1 ) over an algebraically closed field of characteristic different from 2 . The Weyl group of this grading is computed. We also show how this grading gives rise to several interesting fine gradings on exceptional simple Lie algebras of types E 6 , E 7 and E 8 .

Weyl Groups of Fine Gradings on Simple Lie Algebras of Types A, B, C and D

Elduque, AlbertoKochetov, Mikhail — 2012

Serdica Mathematical Journal

2010 Mathematics Subject Classification: Primary 17B70, secondary 17B40, 16W50. Given a grading Γ : L ⨁ = g ∈ G L g on a nonassociative algebra L by an abelian group G, we have two subgroups of Aut(L): the automorphisms that stabilize each component L g (as a subspace) and the automorphisms that permute the components. By the Weyl group of Γ we mean the quotient of the latter subgroup by the former. In the case of a Cartan decomposition of a semisimple complex Lie algebra, this is the...

Page 1

Download Results (CSV)