The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 5 of 5

Showing per page

Order by Relevance | Title | Year of publication

Liouville type theorems for φ-subharmonic functions.

Marco RigoliAlberto G. Setti — 2001

Revista Matemática Iberoamericana

In this paper we present some Liouville type theorems for solutions of differential inequalities involving the φ-Laplacian. Our results, in particular, improve and generalize known results for the Laplacian and the p-Laplacian, and are new even in these cases. Phragmen-Lindeloff type results, and a weak form of the Omori-Yau maximum principle are also discussed.

A weak type (1,1) estimate for a maximal operator on a group of isometries of a homogeneous tree

Michael G. CowlingStefano MedaAlberto G. Setti — 2010

Colloquium Mathematicae

We give a simple proof of a result of R. Rochberg and M. H. Taibleson that various maximal operators on a homogeneous tree, including the Hardy-Littlewood and spherical maximal operators, are of weak type (1,1). This result extends to corresponding maximal operators on a transitive group of isometries of the tree, and in particular for (nonabelian finitely generated) free groups.

Page 1

Download Results (CSV)