Invariant operators on function spaces on homogeneous trees
In this paper we present some Liouville type theorems for solutions of differential inequalities involving the φ-Laplacian. Our results, in particular, improve and generalize known results for the Laplacian and the p-Laplacian, and are new even in these cases. Phragmen-Lindeloff type results, and a weak form of the Omori-Yau maximum principle are also discussed.
We give a simple proof of a result of R. Rochberg and M. H. Taibleson that various maximal operators on a homogeneous tree, including the Hardy-Littlewood and spherical maximal operators, are of weak type (1,1). This result extends to corresponding maximal operators on a transitive group of isometries of the tree, and in particular for (nonabelian finitely generated) free groups.
We study the appropriate versions of parabolicity stochastic completeness and related Liouville properties for a general class of operators which include the p-Laplace operator, and the non linear singular operators in non-diagonal form considered by J. Serrin and collaborators.
Page 1