Moltiplicatori sul gruppo di Heisenberg
Let be the Heisenberg group of dimension . Let be the partial sub-Laplacians on and the central element of the Lie algebra of . We prove that the kernel of the operator is in the Schwartz space if . We prove also that the kernel of the operator is in if and that the kernel of the operator is in if . Here is the Kohn-Laplacian on .
We prove Strichartz inequalities for the solution of the Schrödinger equation related to the full Laplacian on the Heisenberg group. A key point consists in estimating the decay in time of the norm of the free solution; this requires a careful analysis due also to the non-homogeneous nature of the full Laplacian.
Page 1