A multi-server queueing system with two types of customers and an infinite buffer operating in a random environment as a model of a contact center is investigated. The arrival flow of customers is described by a marked Markovian arrival process. Type 1 customers have a non-preemptive priority over type 2 customers and can leave the buffer due to a lack of service. The service times of different type customers have a phase-type distribution with different parameters. To facilitate the investigation...
A single-server queueing system with an infinite buffer is considered. The service of a customer is possible only in the presence of at least one unit of energy, and during the service the number of available units decreases by one. New units of energy arrive in the system at random instants of time if the finite buffer for maintenance of energy is not full. Customers are impatient and leave the system without service after a random amount of waiting time. Such a queueing system describes, e.g.,...
A novel customer batch service discipline for a single server queue is introduced and analyzed. Service to customers is offered in batches of a certain size. If the number of customers in the system at the service completion moment is less than this size, the server does not start the next service until the number of customers in the system reaches this size or a random limitation of the idle time of the server expires, whichever occurs first. Customers arrive according to a Markovian arrival process....
Download Results (CSV)