The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

Endomorphism algebras of motives attached to elliptic modular forms

Alexander F. BrownEknath P. Ghate — 2003

Annales de l’institut Fourier

We study the endomorphism algebra of the motive attached to a non-CM elliptic modular cusp form. We prove that this algebra has a sub-algebra isomorphic to a certain crossed product algebra X . The Tate conjecture predicts that X is the full endomorphism algebra of the motive. We also investigate the Brauer class of X . For example we show that if the nebentypus is real and p is a prime that does not divide the level, then the local behaviour of X at a place lying above p is essentially determined...

Page 1

Download Results (CSV)