Currently displaying 1 – 7 of 7

Showing per page

Order by Relevance | Title | Year of publication

Which 3-manifold groups are Kähler groups?

Alexandru DimcaAlexander Suciu — 2009

Journal of the European Mathematical Society

The question in the title, first raised by Goldman and Donaldson, was partially answered by Reznikov. We give a complete answer, as follows: if G can be realized as both the fundamental group of a closed 3-manifold and of a compact Kähler manifold, then G must be finite—and thus belongs to the well-known list of finite subgroups of O ( 4 ) , acting freely on S 3 .

Hyperplane arrangements and Milnor fibrations

Alexander I. Suciu — 2014

Annales de la faculté des sciences de Toulouse Mathématiques

There are several topological spaces associated to a complex hyperplane arrangement: the complement and its boundary manifold, as well as the Milnor fiber and its own boundary. All these spaces are related in various ways, primarily by a set of interlocking fibrations. We use cohomology with coefficients in rank 1 local systems on the complement of the arrangement to gain information on the homology of the other three spaces, and on the monodromy operators of the various fibrations.

Page 1

Download Results (CSV)