Perturbing the hexagonal circle packing: a percolation perspective
We consider the hexagonal circle packing with radius and perturb it by letting the circles move as independent Brownian motions for time . It is shown that, for large enough , if is the point process given by the center of the circles at time , then, as , the critical radius for circles centered at to contain an infinite component converges to that of continuum percolation (which was shown – based on a Monte Carlo estimate – by Balister, Bollobás and Walters to be strictly bigger than...