Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

Infinite dimensional linear groups with many G - invariant subspaces

Leonid KurdachenkoAlexey SadovnichenkoIgor Subbotin — 2010

Open Mathematics

Let F be a field, A be a vector space over F, GL(F, A) be the group of all automorphisms of the vector space A. A subspace B of A is called nearly G-invariant, if dimF(BFG/B) is finite. A subspace B is called almost G-invariant, if dim F(B/Core G(B)) is finite. In the current article, we study linear groups G such that every subspace of A is either nearly G-invariant or almost G-invariant in the case when G is a soluble p-group where p = char F.

On some infinite dimensional linear groups

Leonid KurdachenkoAlexey SadovnichenkoIgor Subbotin — 2009

Open Mathematics

Let F be a field, A be a vector space over F, and GL(F,A) the group of all automorphisms of the vector space A. A subspace B of A is called nearly G-invariant, if dimF(BFG/B) is finite. A subspace B is called almost G-invariant, if dimF(B/CoreG(B)) is finite. In the present article we begin the study of subgroups G of GL(F,A) such that every subspace of A is either nearly G-invariant or almost G-invariant. More precisely, we consider the case when G is a periodic p′-group where p = charF.

Page 1

Download Results (CSV)