Infinite dimensional linear groups with many G - invariant subspaces

Leonid Kurdachenko; Alexey Sadovnichenko; Igor Subbotin

Open Mathematics (2010)

  • Volume: 8, Issue: 2, page 261-265
  • ISSN: 2391-5455

Abstract

top
Let F be a field, A be a vector space over F, GL(F, A) be the group of all automorphisms of the vector space A. A subspace B of A is called nearly G-invariant, if dimF(BFG/B) is finite. A subspace B is called almost G-invariant, if dim F(B/Core G(B)) is finite. In the current article, we study linear groups G such that every subspace of A is either nearly G-invariant or almost G-invariant in the case when G is a soluble p-group where p = char F.

How to cite

top

Leonid Kurdachenko, Alexey Sadovnichenko, and Igor Subbotin. "Infinite dimensional linear groups with many G - invariant subspaces." Open Mathematics 8.2 (2010): 261-265. <http://eudml.org/doc/269812>.

@article{LeonidKurdachenko2010,
abstract = {Let F be a field, A be a vector space over F, GL(F, A) be the group of all automorphisms of the vector space A. A subspace B of A is called nearly G-invariant, if dimF(BFG/B) is finite. A subspace B is called almost G-invariant, if dim F(B/Core G(B)) is finite. In the current article, we study linear groups G such that every subspace of A is either nearly G-invariant or almost G-invariant in the case when G is a soluble p-group where p = char F.},
author = {Leonid Kurdachenko, Alexey Sadovnichenko, Igor Subbotin},
journal = {Open Mathematics},
keywords = {Vector space; Linear groups; Periodic groups; Invariant subspace; infinite-dimensional linear groups; periodic groups; soluble -groups},
language = {eng},
number = {2},
pages = {261-265},
title = {Infinite dimensional linear groups with many G - invariant subspaces},
url = {http://eudml.org/doc/269812},
volume = {8},
year = {2010},
}

TY - JOUR
AU - Leonid Kurdachenko
AU - Alexey Sadovnichenko
AU - Igor Subbotin
TI - Infinite dimensional linear groups with many G - invariant subspaces
JO - Open Mathematics
PY - 2010
VL - 8
IS - 2
SP - 261
EP - 265
AB - Let F be a field, A be a vector space over F, GL(F, A) be the group of all automorphisms of the vector space A. A subspace B of A is called nearly G-invariant, if dimF(BFG/B) is finite. A subspace B is called almost G-invariant, if dim F(B/Core G(B)) is finite. In the current article, we study linear groups G such that every subspace of A is either nearly G-invariant or almost G-invariant in the case when G is a soluble p-group where p = char F.
LA - eng
KW - Vector space; Linear groups; Periodic groups; Invariant subspace; infinite-dimensional linear groups; periodic groups; soluble -groups
UR - http://eudml.org/doc/269812
ER -

References

top
  1. [1] Baumslag G., Wreath product and p-groups, Proc. Cambridge Philos. Soc, 1959, 55, 224–231 http://dx.doi.org/10.1017/S0305004100033934 Zbl0089.01401
  2. [2] Buckley J.T., Lennox J.C., Neumann B.H., Smith H., Wiegold J., Groups with all subgroups normal-by-finite, Journal Austral. Math. Soc. (Ser. A), 1995, 59, 384–398 http://dx.doi.org/10.1017/S1446788700037289 Zbl0853.20023
  3. [3] Dashkova O.Yu., Dixon M.R., Kurdachenko L.A., Linear groups with rank restrictions on the subgroups of infinite central dimension, Journal Pure and Applied Algebra, 2007, 208, 785–795 http://dx.doi.org/10.1016/j.jpaa.2006.04.002 Zbl1112.20030
  4. [4] Dixon M.R., Evans M.J., Kurdachenko L.A., Linear groups with the minimal condition on subgroups of infinite central dimension, J. Algebra, 2004, 277, 172–186 http://dx.doi.org/10.1016/j.jalgebra.2004.02.029 Zbl1055.20042
  5. [5] Dixon M.R., Kurdachenko L.A., Linear groups with infinite central dimension, Groups St Andrews 2005, Vol. 1, London Mathematical Society, Lecture Note Series 339, Cambridge Univ. Press., 2007, 306–312 Zbl1125.20040
  6. [6] Kurdachenko L.A., Muñoz-Escolano J.M., Otal J., Locally nilpotent linear groups with the weak chain conditions on subgroups of infinite central dimension, Publicacions Matemàtiques, 2008, 52(1), 151–169 Zbl1149.20030
  7. [7] Kurdachenko L.A., Muñoz-Escolano J.M., Otal J., Antifinitary linear groups, Forum Math., 2008, 20(1), 27–44 http://dx.doi.org/10.1515/FORUM.2008.002 Zbl1145.20025
  8. [8] Kurdachenko L.A., Muñoz-Escolano J.M., Otal J., Semko N.N., Locally nilpotent linear groups with restrictions on their subgroups of infinite central dimension, Geometriae Dedicata, 2009, 138, 69–81 http://dx.doi.org/10.1007/s10711-008-9299-0 Zbl1168.20024
  9. [9] Kurdachenko L.A., Sadovnichenko A.V., Subbotin I.Ya., On some infinite dimensional groups, Cent. Eur. J. Math., 2009, 7(2), 178–185 Zbl1193.20062
  10. [10] Kurdachenko L.A., Semko N.N., Subbotin I.Ya., Insight into modules over Dedekind domains, Institute of Mathematics: Kiev-2008 Zbl1199.13001
  11. [11] Kurdachenko L.A., Subbotin I.Ya., Linear groups with the maximal condition on subgroups of infinite central dimension, Publicacions Matemàtiques, 2006, 50(1), 103–131 Zbl1132.20029
  12. [12] Muñoz-Escolano J.M., Otal J., Semko N.N., Linear groups with the weak chain conditions on subgroups of infinite central dimension, Comm. Algebra, 2008, 36(2), 749–763 http://dx.doi.org/10.1080/00927870701724318 Zbl1141.20030
  13. [13] Neumann B.H., Groups with finite classes of conjugate subgroups, Math. Z, 1955, 63, 76–96 http://dx.doi.org/10.1007/BF01187925 Zbl0064.25201
  14. [14] Phillips R.E., The structure of groups of finitary transformations, J. Algebra, 1988, 119, 400–448 http://dx.doi.org/10.1016/0021-8693(88)90068-3 
  15. [15] Phillips R.E., Finitary linear groups: a survey, In: Finite and locally finite groups, NATO ASI Series, Vol. 471, Kluver, Dordrecht, 1995, 111–146 Zbl0840.20048

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.