Infinite dimensional linear groups with many G - invariant subspaces
Leonid Kurdachenko; Alexey Sadovnichenko; Igor Subbotin
Open Mathematics (2010)
- Volume: 8, Issue: 2, page 261-265
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topLeonid Kurdachenko, Alexey Sadovnichenko, and Igor Subbotin. "Infinite dimensional linear groups with many G - invariant subspaces." Open Mathematics 8.2 (2010): 261-265. <http://eudml.org/doc/269812>.
@article{LeonidKurdachenko2010,
abstract = {Let F be a field, A be a vector space over F, GL(F, A) be the group of all automorphisms of the vector space A. A subspace B of A is called nearly G-invariant, if dimF(BFG/B) is finite. A subspace B is called almost G-invariant, if dim F(B/Core G(B)) is finite. In the current article, we study linear groups G such that every subspace of A is either nearly G-invariant or almost G-invariant in the case when G is a soluble p-group where p = char F.},
author = {Leonid Kurdachenko, Alexey Sadovnichenko, Igor Subbotin},
journal = {Open Mathematics},
keywords = {Vector space; Linear groups; Periodic groups; Invariant subspace; infinite-dimensional linear groups; periodic groups; soluble -groups},
language = {eng},
number = {2},
pages = {261-265},
title = {Infinite dimensional linear groups with many G - invariant subspaces},
url = {http://eudml.org/doc/269812},
volume = {8},
year = {2010},
}
TY - JOUR
AU - Leonid Kurdachenko
AU - Alexey Sadovnichenko
AU - Igor Subbotin
TI - Infinite dimensional linear groups with many G - invariant subspaces
JO - Open Mathematics
PY - 2010
VL - 8
IS - 2
SP - 261
EP - 265
AB - Let F be a field, A be a vector space over F, GL(F, A) be the group of all automorphisms of the vector space A. A subspace B of A is called nearly G-invariant, if dimF(BFG/B) is finite. A subspace B is called almost G-invariant, if dim F(B/Core G(B)) is finite. In the current article, we study linear groups G such that every subspace of A is either nearly G-invariant or almost G-invariant in the case when G is a soluble p-group where p = char F.
LA - eng
KW - Vector space; Linear groups; Periodic groups; Invariant subspace; infinite-dimensional linear groups; periodic groups; soluble -groups
UR - http://eudml.org/doc/269812
ER -
References
top- [1] Baumslag G., Wreath product and p-groups, Proc. Cambridge Philos. Soc, 1959, 55, 224–231 http://dx.doi.org/10.1017/S0305004100033934 Zbl0089.01401
- [2] Buckley J.T., Lennox J.C., Neumann B.H., Smith H., Wiegold J., Groups with all subgroups normal-by-finite, Journal Austral. Math. Soc. (Ser. A), 1995, 59, 384–398 http://dx.doi.org/10.1017/S1446788700037289 Zbl0853.20023
- [3] Dashkova O.Yu., Dixon M.R., Kurdachenko L.A., Linear groups with rank restrictions on the subgroups of infinite central dimension, Journal Pure and Applied Algebra, 2007, 208, 785–795 http://dx.doi.org/10.1016/j.jpaa.2006.04.002 Zbl1112.20030
- [4] Dixon M.R., Evans M.J., Kurdachenko L.A., Linear groups with the minimal condition on subgroups of infinite central dimension, J. Algebra, 2004, 277, 172–186 http://dx.doi.org/10.1016/j.jalgebra.2004.02.029 Zbl1055.20042
- [5] Dixon M.R., Kurdachenko L.A., Linear groups with infinite central dimension, Groups St Andrews 2005, Vol. 1, London Mathematical Society, Lecture Note Series 339, Cambridge Univ. Press., 2007, 306–312 Zbl1125.20040
- [6] Kurdachenko L.A., Muñoz-Escolano J.M., Otal J., Locally nilpotent linear groups with the weak chain conditions on subgroups of infinite central dimension, Publicacions Matemàtiques, 2008, 52(1), 151–169 Zbl1149.20030
- [7] Kurdachenko L.A., Muñoz-Escolano J.M., Otal J., Antifinitary linear groups, Forum Math., 2008, 20(1), 27–44 http://dx.doi.org/10.1515/FORUM.2008.002 Zbl1145.20025
- [8] Kurdachenko L.A., Muñoz-Escolano J.M., Otal J., Semko N.N., Locally nilpotent linear groups with restrictions on their subgroups of infinite central dimension, Geometriae Dedicata, 2009, 138, 69–81 http://dx.doi.org/10.1007/s10711-008-9299-0 Zbl1168.20024
- [9] Kurdachenko L.A., Sadovnichenko A.V., Subbotin I.Ya., On some infinite dimensional groups, Cent. Eur. J. Math., 2009, 7(2), 178–185 Zbl1193.20062
- [10] Kurdachenko L.A., Semko N.N., Subbotin I.Ya., Insight into modules over Dedekind domains, Institute of Mathematics: Kiev-2008 Zbl1199.13001
- [11] Kurdachenko L.A., Subbotin I.Ya., Linear groups with the maximal condition on subgroups of infinite central dimension, Publicacions Matemàtiques, 2006, 50(1), 103–131 Zbl1132.20029
- [12] Muñoz-Escolano J.M., Otal J., Semko N.N., Linear groups with the weak chain conditions on subgroups of infinite central dimension, Comm. Algebra, 2008, 36(2), 749–763 http://dx.doi.org/10.1080/00927870701724318 Zbl1141.20030
- [13] Neumann B.H., Groups with finite classes of conjugate subgroups, Math. Z, 1955, 63, 76–96 http://dx.doi.org/10.1007/BF01187925 Zbl0064.25201
- [14] Phillips R.E., The structure of groups of finitary transformations, J. Algebra, 1988, 119, 400–448 http://dx.doi.org/10.1016/0021-8693(88)90068-3
- [15] Phillips R.E., Finitary linear groups: a survey, In: Finite and locally finite groups, NATO ASI Series, Vol. 471, Kluver, Dordrecht, 1995, 111–146 Zbl0840.20048
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.