A framework to study commutation problems
It is well-known that any weak Hopf algebra gives rise to a Hopf algebroid. Moreover it is possible to characterize those Hopf algebroids that arise in this way. Recently, the notion of a weak Hopf algebra has been extended to the case of algebras without identity. This led to the theory of weak multiplier Hopf algebras. Similarly also the theory of Hopf algebroids was recently developed for algebras without identity. They are called multiplier Hopf algebroids. Then it is quite...
Let G be a finite group. Consider the algebra A of all complex functions on G (with pointwise product). Define a coproduct Δ on A by Δ(f)(p,q) = f(pq) where f ∈ A and p,q ∈ G. Then (A,Δ) is a Hopf algebra. If G is only a groupoid, so that the product of two elements is not always defined, one still can consider A and define Δ(f)(p,q) as above when pq is defined. If we let Δ(f)(p,q) = 0 otherwise, we still get a coproduct on A, but Δ(1) will no longer be the identity in A ⊗ A. The pair (A,Δ)...
Page 1