The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

Thompson’s conjecture for the alternating group of degree 2 p and 2 p + 1

Azam BabaiAli Mahmoudifar — 2017

Czechoslovak Mathematical Journal

For a finite group G denote by N ( G ) the set of conjugacy class sizes of G . In 1980s, J. G. Thompson posed the following conjecture: If L is a finite nonabelian simple group, G is a finite group with trivial center and N ( G ) = N ( L ) , then G L . We prove this conjecture for an infinite class of simple groups. Let p be an odd prime. We show that every finite group G with the property Z ( G ) = 1 and N ( G ) = N ( A i ) is necessarily isomorphic to A i , where i { 2 p , 2 p + 1 } .

Page 1

Download Results (CSV)