Inverse source problem in a space fractional diffusion equation from the final overdetermination
We consider the problem of determining the unknown source term in a space fractional diffusion equation from the measured data at the final time . In this way, a methodology involving minimization of the cost functional is applied and shown that this cost functional is Fréchet differentiable and its derivative can be formulated via the solution of an adjoint problem. In addition, Lipschitz continuity of the gradient is proved. These results help us to prove the monotonicity and convergence...