Inverse source problem in a space fractional diffusion equation from the final overdetermination

Amir Hossein Salehi Shayegan; Reza Bayat Tajvar; Alireza Ghanbari; Ali Safaie

Applications of Mathematics (2019)

  • Volume: 64, Issue: 4, page 469-484
  • ISSN: 0862-7940

Abstract

top
We consider the problem of determining the unknown source term f = f ( x , t ) in a space fractional diffusion equation from the measured data at the final time u ( x , T ) = ψ ( x ) . In this way, a methodology involving minimization of the cost functional J ( f ) = 0 l ( u ( x , t ; f ) | t = T - ψ ( x ) ) 2 d x is applied and shown that this cost functional is Fréchet differentiable and its derivative can be formulated via the solution of an adjoint problem. In addition, Lipschitz continuity of the gradient is proved. These results help us to prove the monotonicity and convergence of the sequence { J ' ( f ( n ) ) } , where f ( n ) is the n th iteration of a gradient like method. At the end, the convexity of the Fréchet derivative is given.

How to cite

top

Salehi Shayegan, Amir Hossein, et al. "Inverse source problem in a space fractional diffusion equation from the final overdetermination." Applications of Mathematics 64.4 (2019): 469-484. <http://eudml.org/doc/294454>.

@article{SalehiShayegan2019,
abstract = {We consider the problem of determining the unknown source term $ f=f(x,t) $ in a space fractional diffusion equation from the measured data at the final time $ u(x,T) = \psi (x) $. In this way, a methodology involving minimization of the cost functional $ J(f) = \int _0^l ( u(x,t;f )|_\{t = T\} - \psi (x)) ^2 \{\rm d\}x$ is applied and shown that this cost functional is Fréchet differentiable and its derivative can be formulated via the solution of an adjoint problem. In addition, Lipschitz continuity of the gradient is proved. These results help us to prove the monotonicity and convergence of the sequence $\lbrace J^\{\prime \}(f^\{(n)\}) \rbrace $, where $ f^\{(n)\} $ is the $ n$th iteration of a gradient like method. At the end, the convexity of the Fréchet derivative is given.},
author = {Salehi Shayegan, Amir Hossein, Bayat Tajvar, Reza, Ghanbari, Alireza, Safaie, Ali},
journal = {Applications of Mathematics},
keywords = {inverse source problem; space fractional diffusion equation; weak solution theory; adjoint problem; Lipschitz continuity},
language = {eng},
number = {4},
pages = {469-484},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Inverse source problem in a space fractional diffusion equation from the final overdetermination},
url = {http://eudml.org/doc/294454},
volume = {64},
year = {2019},
}

TY - JOUR
AU - Salehi Shayegan, Amir Hossein
AU - Bayat Tajvar, Reza
AU - Ghanbari, Alireza
AU - Safaie, Ali
TI - Inverse source problem in a space fractional diffusion equation from the final overdetermination
JO - Applications of Mathematics
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 64
IS - 4
SP - 469
EP - 484
AB - We consider the problem of determining the unknown source term $ f=f(x,t) $ in a space fractional diffusion equation from the measured data at the final time $ u(x,T) = \psi (x) $. In this way, a methodology involving minimization of the cost functional $ J(f) = \int _0^l ( u(x,t;f )|_{t = T} - \psi (x)) ^2 {\rm d}x$ is applied and shown that this cost functional is Fréchet differentiable and its derivative can be formulated via the solution of an adjoint problem. In addition, Lipschitz continuity of the gradient is proved. These results help us to prove the monotonicity and convergence of the sequence $\lbrace J^{\prime }(f^{(n)}) \rbrace $, where $ f^{(n)} $ is the $ n$th iteration of a gradient like method. At the end, the convexity of the Fréchet derivative is given.
LA - eng
KW - inverse source problem; space fractional diffusion equation; weak solution theory; adjoint problem; Lipschitz continuity
UR - http://eudml.org/doc/294454
ER -

References

top
  1. Bushuyev, I., 10.1088/0266-5611/11/4/001, Inverse Probl. 11 (1995), L11--L16. (1995) Zbl0840.35120MR1345998DOI10.1088/0266-5611/11/4/001
  2. Choulli, M., 10.1088/0266-5611/10/5/009, Inverse Probl. 10 (1994), 1123-1132. (1994) Zbl0807.35154MR1296363DOI10.1088/0266-5611/10/5/009
  3. Choulli, M., Yamamoto, M., 10.1088/0266-5611/12/3/002, Inverse Probl. 12 (1996), 195-205. (1996) Zbl0851.35133MR1391534DOI10.1088/0266-5611/12/3/002
  4. Feng, L. B., Zhuang, P., Liu, F., Turner, I., Gu, Y. T., 10.1007/s11075-015-0065-8, Numer. Algorithms 72 (2016), 749-767. (2016) Zbl1343.65122MR3514786DOI10.1007/s11075-015-0065-8
  5. Ford, N. J., Xiao, J., Yan, Y., 10.2478/s13540-011-0028-2, Fract. Calc. Appl. Anal. 14 (2011), 454-474. (2011) Zbl1273.65142MR2837641DOI10.2478/s13540-011-0028-2
  6. Hasanov, A., 10.1016/j.jmaa.2006.08.018, J. Math. Anal. Appl. 330 (2007), 766-779. (2007) Zbl1120.35083MR2308406DOI10.1016/j.jmaa.2006.08.018
  7. Hasanoğlu, A. Hasanov, Romanov, V. G., 10.1007/978-3-319-62797-7, Springer, Cham (2017). (2017) Zbl1385.65053MR3676924DOI10.1007/978-3-319-62797-7
  8. Isakov, V., 10.1002/cpa.3160440203, Commun. Pure Appl. Math. 54 (1991), 185-209. (1991) Zbl0729.35146MR1085828DOI10.1002/cpa.3160440203
  9. Kaya, M., 10.1007/s10492-014-0081-3, Appl. Math., Praha 59 (2014), 715-728. (2014) Zbl1340.35384MR3277735DOI10.1007/s10492-014-0081-3
  10. Li, X., Xu, C., 10.1137/080718942, SIAM J. Numer. Anal. 47 (2009), 2108-2131. (2009) Zbl1193.35243MR2519596DOI10.1137/080718942
  11. Li, X., Xu, C., 10.4208/cicp.020709.221209a, Commun. Comput. Phys. 8 (2010), 1016-1051. (2010) Zbl1364.35424MR2674276DOI10.4208/cicp.020709.221209a
  12. Meerschaert, M. M., Tadjeran, C., 10.1016/j.cam.2004.01.033, J. Comput. Appl. Math. 172 (2004), 65-77. (2004) Zbl1126.76346MR2091131DOI10.1016/j.cam.2004.01.033
  13. Metzler, R., Klafter, J., 10.1016/s0370-1573(00)00070-3, Phys. Rep. 339 (2000), 1-77. (2000) Zbl0984.82032MR1809268DOI10.1016/s0370-1573(00)00070-3
  14. Shayegan, A. H. Salehi, Zakeri, A., 10.1080/17415977.2017.1384826, Inverse Probl. Sci. Eng. 26 (2018), 1130-1154. (2018) Zbl07039161MR3802827DOI10.1080/17415977.2017.1384826
  15. Tian, W. Y., Li, C., Deng, W., Wu, Y., 10.1016/j.matcom.2012.08.011, Math. Comput. Simul. 85 (2012), 45-56. (2012) Zbl1260.35246MR2999850DOI10.1016/j.matcom.2012.08.011
  16. Zeghal, A., 10.1016/s0022-247x(02)00155-5, J. Math. Anal. Appl. 272 (2002), 240-248. (2002) Zbl1007.35104MR1930713DOI10.1016/s0022-247x(02)00155-5

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.