Dans une belle paire de modèles d’une théorie stable ayant élimination des imaginaires sans la propriété de recouvrement fini, tout groupe définissable se projette, à isogénie près, sur les points -rationnels d’un groupe définissable dans le réduit à paramètres dans . Le noyau de cette projection est un groupe définissable dans le réduit.
Un groupe interprétable dans une paire de corps algébriquement clos où est une extension propre de est, à isogénie près, l’extension des...
The ample hierarchy of geometries of stables theories is strict. We generalise the construction of the free pseudospace to higher dimensions and show that the n-dimensional free pseudospace is ω-stable n-ample yet not (n+1)-ample. In particular, the free pseudospace is not 3-ample. A thorough study of forking is conducted and an explicit description of canonical bases is given.
We introduce a generalisation of CM-triviality relative to a fixed invariant collection of partial types, in analogy to the Canonical Base Property defined by Pillay, Ziegler and Chatzidakis which generalises one-basedness. We show that, under this condition, a stable field is internal to the family, and a group of finite Lascar rank has a normal nilpotent subgroup such that the quotient is almost internal to the family.
In this paper, we shall study type-definable groups in a simple theory with respect to one or several stable reducts. While the original motivation came from the analysis of definable groups in structures obtained by Hrushovski's amalgamation method, the notions introduced are in fact more general, and in particular can be applied to certain expansions of algebraically closed fields by operators.
Download Results (CSV)